
21-105 Pre-Calculus
Notes for Week # 3

Higher-Degree Polynomial Equations.

At this point we have seen complete methods for solving linear and quadratic equations.
For higher-degree equations, the question becomes more complicated: cubic and quartic equations
can be solved by similar formulas, and this has been known since the 16th Century: del Ferro,
Cardan, and Tartaglia are all credited with having discovered the cubic equation, and Ferrari with
the quartic equation. (Interestingly enough, the mainly self-taught genius Ramanujan, perhaps
the 20th Century’s most impressive mathematical mind, discovered his own method for solving the
quartic after having been shown how to solve the cubic.) The situation becomes more bleak for
higher-degree equations: Abel showed, in the first half of the 19th Century, that fifth degree and
higher equations do not have similar formulas. And while he didn’t live to see it done, the same
result was a natural consequence of Evariste Galois’s work, a French mathematician who died in
a duel before his 21st birthday. I will not discuss the cubic or quartic formulas, but we need not
always resort to the big guns to solve special problems:

Example: Solve x3 − 1 = 0.

Solution: Our only x term is an x3, so we can peel-the-onion:

x3 − 1 = 0
x3 = 1

3
√

x3 = 3
√

1
x = 1,

so we see that x = 1 is a solution. Note that we were able to take the cubic root of both sides of
the equation without resorting to adding in “±”s anywhere. This is because every real number has
exactly one real cubic root, since the order of the root (3) is odd. ¥

Example: Solve x4 − 2x2 + 1 = 0.

Solution: While this is a quartic equation that doesn’t consist of only one power of x, we
do note that every power of x is even, so we make a substitution: if we let u = x2 and solve for u
and get numeric values, then we can substitute x2 into those equations to get values of x:

x4 − 2x2 + 1 = (x2)2 − 2(x2) + 1 = u2 − 2u + 1,

and this is a quadratic in u with a = 1, b = −1, c = 1, so by the quadratic formula,

u =
−b±√b2 − 4ac

2a
=
−(−2)±

√
(−2)2 − 4(1)(1)
2(1)

=
2±√4− 4

2

=
2±√0

2

=
2
2

= 1,



so u = 1. Substituting u = x2 back in, we have x2 = u = 1, so x is a square root of 1, meaning
x = ±1. ¥

Notice that linear equations have at most 1 solution and quadratic equations have at most 2
solutions. This is true in general: nth-degree polynomial equations have at most n real solutions.

Functions.

While the next topic may seem a bit unrelated to polynomial equations, it isn’t. We’re going
to discuss a more general way of looking at an equation but we need a few definitions and ideas first.

Definition: Let A and B be sets. A function f from A into B is a rule that maps every
element of A to exactly one element of B. We call the set A, the set of values that the function
takes in its domain. We call the set of all elements of B that are associated with elements of f ’s
domain the range of f .

Unless stated otherwise, we will deal with functions that take in real numbers (though pos-
sibly not ALL real numbers) as input, and produce real numbers as output: i.e. the domain and
range will both be sets of real numbers.

Example: Let f(x) = x, the identity function from R into R. This notation means that
our function associates the x we put in (the x in f(x)) with the value on the right-hand side of the
equation (which in this case is still x). The domain of f is R, because clearly we can put any real
value x into the formula x. The range of f is R as well, because if we let z be any real number,
then letting x = z, so x is in the domain of f , we have f(x) = x = z, so f(x) = z and z is in the
range by definition. ¥

Example: Let f(x) = x2 from R into R. Notice that the formula for f(x) is a polynomial
in x: we call functions of this type polynomial functions. The domain of f is R, because if we
take any real number x, then f(x) = x2 is another real number because multiplication is closed in
the reals . The range of f , on the other hand, is not all of R: for example, there is no real x so
that x2 = −1, so −1 is not in the range of f . In fact, the range of f is the set of all nonnegative
reals, which we can denote [0,∞) using interval notation. ¥

Interval Notation.
(Section 1.8 of JIT)

Let a and b be real numbers, with a ≤ b. Then we define the following finite intervals from
a to b:

[a, b] = {x | a ≤ x ≤ b} ,

(a, b) = {x | a < x < b} ,

[a, b) = {x | a ≤ x < b} ,

(a, b] = {x | a < x ≤ b} ,

so [a, b] is the set of all numbers x satisfying a ≤ x ≤ b, etc. We call [a, b] a closed interval (it
contains both endpoints), (a, b) an open interval (it contains neither endpoint), and we refer to
[a, b) and (a, b] as half-open intervals. We can think of intervals as being the connected part of



the number line between a and b, and the use of parentheses or brackets determines which endpoints
are also included.

Example: The interval [0, 1) is the set of all numbers between 0 and 1, including 0 and
excluding 1:

Additionally, with the use of −∞ and ∞, we can define the following infinite intervals:

[a,∞) = {x | a ≤ x} ,

(a,∞) = {x | a < x} ,

(−∞, a] = {x | x ≤ a} , and
(−∞, a) = {x | x < a} .

Note that −∞ and ∞ always have a parenthesis next to them, and never a bracket.

Example: Let f(x) = 2x+5. Determine the domain and range of f , as well as f(0) and f(3).

Solution: The domain of f is R, because for every real number x, we have 2x + 5 is also a
real number.

The range of f is R. Why? Suppose z is any real number. Then in order for z to be in the
range of f , we must have an x in the domain (R) with f(x) = z. Since f(x) = 2x + 5, we get that
z is in the range of f if 2x + 5 = z has a real solution for x. But this is a linear equation in x, and
solving for x we get that x = z−5

2 , which is a real number and hence in the domain of f . Since z
was any real number, and we showed z is in the range, that means the range must be every real
number.

Finally, with substitution we see that

f(0) = 2(0) + 5 = 0 + 5 = 0

and
f(3) = 2(3) + 5 = 6 + 5 = 11. ¥

Example: Let f(x) =
√

x. Determine the domain and range of f .

Solution: Turning back to our definition of the radical symbol, we see that it specifically
means the nonnegative square root of x. But we know that negative numbers do not have real
square roots, so the domain is [0,∞).

Since
√

x ≥ 0 for any nonnegative x, we expect the range to be [0,∞) as well: let z be a
nonnegative real number. Then z =

√
z2 (because z ≥ 0), so if we take x = z2, we have found an

x with f(x) = z, so z is in the range, and the range is [0,∞).

The Cartesian Plane.

Definition: The perpendicular intersection of two number lines (one horizontal, one vertical),
called the coordinate axes, at the 0 points forms an infinite plane, called the Cartesian Plane,



where the horizontal axis (often called the x-axis) increases from left-to-right, and the vertical axis
(often called the y-axis) increases from bottom-to-top. Every point in the plane is an ordered
pair (x, y) of numbers, where x and y are the values along the x- and y-axis, respectively. The
point (0, 0), where the two axes intersect, is called the origin.

The Cartesian Plane

The Cartesian Plane was invented/discovered by Descartes in the early 17th Century, and
was the foundation for analytic geometry, which allowed the ideas of Greek geometry and Euro-
pean algebra and analysis to combine. It’s greatest use is in providing graphical representations of
functions:

Definition: The graph of a function f is the set of points {(x, y)|y = f(x)}, and is tradi-
tionally shown by marking the points on the Cartesian Plane.

Example: Sketch the graph of f(x) = x.

Solution:



Sketch of f(x) = x, with (1, 1), (2, 2), (3, 3), (4, 4) marked.

Example: Sketch the graph of f(x) = x2.

Solution:

Sketch of f(x) = x2.

Lines.

We begin our serious look at functions with linear functions, whose graphs are lines. Lines
are ubiquitous in calculus: in fact, differential calculus is primarily focused in using lines (linear
functions) to approximate curves (nonlinear functions). Consequently, they warrant some special
attention:

Definition: A vertical line is a set of all points satisfying the equation x = c for some fixed
c. Let f(x) = mx + b be a linear function. We call the graph of f a (non-vertical) line in the



plane. We call m the slope of the line, and b the y-intercept.

Example: Given two points in the plane P1(x1, y1) and P2(x2, y2), find an equation of the
line that passes through both.

Solution: If x1 = x2, then the vertical line x = x1 passes through them both, so we suppose
x1 6= x2. Then the line is the graph of f(x) = mx + b for some m,b, so we need to find m and
b with the conditions that f(x1) = y1 and f(x2) = y2 (so that P1 and P2 are in the graph of f).
That gives us two linear equations,

mx1 + b = y1, and mx2 + b = y2

in two unknowns (m, b). From the first equation, we get b = y1 −mx1, and substituting this into
the second equation, we get

mx2 + b = y2

mx2 + (y1 −mx1) = y2

mx2 −mx1 = y2 − y1

m(x2 − x1) = y2 − y1

m =
y2 − y1

x2 − x1
,

and since there is no m or b on the right-hand side, we have a definite value for m. Using our
equation for b in terms of m, we see that

b = y1 −mx1 = y1 −
(

y2 − y1

x2 − x1

)
x1.

Therefore

f(x) =
(

y2 − y1

x2 − x1

)
x + y1 −

(
y2 − y1

x2 − x1

)
x1,

and since our line is the graph, its equation is therefore y = f(x), or

y =
(

y2 − y1

x2 − x1

)
x + y1 −

(
y2 − y1

x2 − x1

)
x1. ¥

From the example, we get two very important formulas: first, that the slope of a line through
any two points P1(x1, y1) and P2(x2, y2) with x1 6= x2 is

m =
y2 − y1

x2 − x1
.

The slope is a measurement of the steepness that a function increases or decreases, which can be
seen in the angles the graphed lines make with the x-axis. Moreover, we see that the slope of a
vertical line would be undefined, since we would have to divide by 0.

The second formula we find is an equation for a line provided you know one point P1(x1, y1),
and the slope:

y = mx + y1 −mx1,

or
y − y1 = m(x− x1),



the point-slope form of a line. The more standard form of writing the equation, y = mx + b, is
called the slope-intercept form.

Example: Find the equation of a line passing through the point (1, 1) with slope 7.

Solution: We’re given the slope, m = 7, and an initial point (x1, y1) = (1, 1), so the form
of the equation to use is point-slope:

y − y0 = m(x− x0),

or
y − 1 = 7(x− 1).

Rewriting into slope intercept form by solving for y, we get

y = 7(x− 1) + 1 = 7x− 7 + 1 = 7x− 6,

so the line we want is y = 7x− 6:

Sketch of y = 7x− 6.



As was mentioned earlier, functions give us a slightly more general way of looking at equations:

Definition: We define the graph of an equation in x and y to be the set of all points
(a, b) that satisfy the equation when a is substituted for x and b is substituted for y. From this
definition, we see that the graph of a function f(x) is really the graph of the equation y = f(x).

So, when we say the graph of f(x) = mx + b, we also mean the graph of the equation
y = mx + b. The two notations (f(x) and y) will be used interchangeably.

Definition: We say two (non-vertical) lines are parallel if they have the same slope. We
say two lines are perpendicular if their slopes are negative reciprocals, i.e. the product of their
slopes is −1.

Example: The lines y = x and y = x + 3 are parallel: both have slope 1.

Sketch of y = x and y = x + 3.



Example: The lines y = 1
2x and y = −2x are perpendicular: the slope of y = 1

2x is 1
2 , the

slope of y = −2x is −2, and (1
2)(−2) = 2

−2 = −1.

Sketch of y = (1/2)x and y = −2x.

Let’s look now at taking a function whose graph we know, say y = f(x), and determining
what function g(x) gives us the same shape, but shifted up/down and left/right.

Shifting Graphs Up and Down:
(Section 4.4 in JIT.)

Example: Let f(x) = |x|, the absolute value of x, so

f(x) = |x| =
{

x if x ≥ 0,

−x if x < 0.

Suppose we look at the graph of f , and we want to shift the graph up by 3 units. Our goal
will be finding the function g(x) whose graph is precisely that.



Sketch of y = |x| and y = g(x).

If we take any value x in f ’s domain, and look at the corresponding point (x, f(x)) on the
curve, we see that by going up 3 units, we get to the corresponding point on the graph of g(x),
(x, g(x)). But that point’s y-coordinate is f(x)+3, so the point (x, g(x)) is the point (x, f(x)+3).
But for the points to be identical, their y-coordinates must be identical, so g(x) = f(x) + 3, which,
in this case means g(x) = |x|+ 3, for all x in f ’s domain.

This idea works whether or not we used the number 3 or the number 5, or even the number
−12, and is true for ANY function, not just f(x) = |x|:

• To shift the graph of a function y = f(x) up by c units, you graph the function y = f(x)+c.

• To shift the graph of a function y = f(x) down by c units, you graph the function y =
f(x)− c.

Shifting Graphs Left and Right:
(Section 4.5 in JIT.)

Now, let’s look at the graph of f(x) = x2, and suppose we want to shift it to the right by 2
units to get the graph of a new function, g(x):



Sketch of y = x2 and y = g(x).

Again, looking at a point (x, f(x)) on f ’s graph, we see that by going right 2 units (increasing
the x-coordinate by 2), we get to the corresponding point on the curve of g(x), (x + 2, g(x + 2)).
But that point’s y-coordinate value is f(x), so (x + 2, g(x + 2)) is (x + 2, f(x)), and this holds
for any value of x. But, for the points to be identical, their y-coordinates must be identical, so
g(x + 2) = f(x). This is true for any value of x, including x − 2: g((x − 2) + 2) = f(x − 2), so
g(x) = f(x− 2). As before, this pattern holds for all functions in a similar way:

• To shift the graph of a function y = f(x) left by c units, you simply graph the function
y = f(x + c).

• To shift the graph of a function y = f(x) right by c units, you simply graph the function
y = f(x− c).

Be careful! When shifting up or down by c we add or subtract c, but when shifting to the
left we have to add c and shifting to the right we subtract. They’re slightly different, so make sure
you appreciate that!

Shifting Graphs both Up (or Down) and Right (or Left):
(Section 4.6 in JIT )

We can combine shifting up/down and left/right by simply doing one, then the other: to shift
the graph of f(x) up (or down) and then left (or right), just do the following:

1. Take the graph of y = f(x) and shift it up (or down), resulting in the graph of a new
function, y = h(x).

2. Shift the graph of that new function h(x) left or right, resulting in the graph of yet another
new function y = g(x).

The graph of y = g(x) is the solution. (In fact the order doesn’t matter: we could shift left
or right first, and then shift up or down. The end result will still be the same.)



Example: Suppose we shift the graph of y =
√

x up 3 and to the right 2. Find the equation
of the new graph:

Solution: Let f(x) =
√

x, so that we can just apply the 2-step process above: We first
shift the graph up 3, which, by what we’ve done already, gives us the graph of the function
h(x) = f(x) + 3 =

√
x + 3. Then, we shift the graph of h(x) to the right by 2, which gives us the

function g(x) = h(x− 2) =
√

x− 2 + 3. So the graph of y = g(x), or y =
√

x− 2 + 3 is our desired
solution:

Sketch of y = f(x) =
√

x and y = g(x). ¥

But now let’s look at a slightly trickier problem:

Example: Graph the equation y = x2 − 6x + 4.

Solution: Rather than simply plotting points and hoping we get the right answer, we can
be a bit more clever: we can complete the square!

y = x2 − 6x + 4
= (x2 − 6x) + 4
=

(
x2 + 2 (−3)x

)
+ 4

=
(
x2 + 2 (−3)x + (−3)2 − (−3)2

)
+ 4

=
(
x2 + 2 (−3)x + (−3)2

)− (−3)2 + 4
= (x + (−3))2 − 9 + 4
= (x− 3)2 − 5.

Why does this help us? Well, we’ve already seen how to graph y = x2, and y = (x− 3)2 − 5
is the graph we’d get if we shifted y = x2 down by 5, and then right by 3:



Sketch of y = x2 and y = x2 − 6x + 4. ¥


