Logic and Definitions

C.J. Argue

If you see any notation that you don’t recognize, there’s a guide on the next page.

Solutions

1. A function $f : A \to B$ is injective if whenever $f(x) = f(y)$, we have $x = y$. Equivalently, $f : A \to B$ is injective if $x \neq y$ implies that $f(x) \neq f(y)$.

2. Suppose $f(x) = f(y)$, we want to show that $x = y$. Applying g to both sides gives $g(f(x)) = g(f(y))$, or equivalently, $h(x) = h(y)$. Since h is injective, we have $x = y$, as was desired to show.

 The converse, “if $f(x)$ is injective, then $h(x)$ is injective” is false. A counterexample is given by $f(x) = x$, $g(x) = 0$, so $h(x) = 0$ for all x. f is injective, but $h(1) = 0 = h(0)$, but $1 \neq 0$, so h is not injective.

3. (\Rightarrow): Suppose that f is injective. Let $S = \{y : \exists x \in A \text{ such that } f(x) = y\}$. Since f is injective, for $y \in S$, there is a unique $x \in A$ such that $f(x) = y$, and we define $g(y)$ to be this x. Let $a \in A$ be an arbitrary element, and for $y \notin S$, define $g(y) = a$. Then g is a function, and $g(f(x)) = x$ for all $x \in A$.

 (\Leftarrow): Suppose that there is some g such that $g(f(x)) = x$ for all $x \in A$. If $f(x) = f(y)$, then applying g to both sides gives $x = g(f(x)) = g(f(y)) = y$, so $x = y$. Thus, f is injective.

4. For each $p \in l_1$, l_1 is the unique line parallel to l_2 that contains p. Since l_3 is parallel to l_2 and distinct from l_1, $p \notin l_3$. As this holds for all $p \in l_1$, l_1 and l_3 have no common points, so they are parallel by definition.

5. The smallest (nontrivial) affine plane is $P = \{a, b, c, d\}$ and $L = \{2$-point subsets of $P\}$.

6. Assume for a contradiction that l is a line containing only one point, p. There is another point q, and the line l' containing q, p also does not contain all points, so there is a point r not in this line. There is a line l'' containing r parallel to l'. $p \notin l''$, so l'' is also parallel to l. By problem 4 implies that l is parallel to l', but $p \in l \cap l'$, which is a contradiction. Thus, no line contains only a single point.

7. Fact: Any two distinct lines k, l share at most one point, i.e. $|l \cap k| \leq 1$.

 Proof: Each pair of points is contained in only one line (axiom (a)).

 Let l_1 and l_2 be distinct lines. By the previous problem, l_1, l_2 each contain at least two points and by the fact they share at most one point. Thus, there are points $p \in l_1 \setminus l_2$ and $q \in l_2 \setminus l_1$. By axiom (a), there is a line l_3 containing p and q. Let r be any point in $l_1 \setminus \{p\}$. $r \notin l_3$ because $|l_1 \cap l_3| \leq 1$. By axiom (b), there is a line l_r parallel to l_3 that contains r. l_r must intersect l_2, say at the point p_r. We claim that the points p_r are all distinct. Given this, we have found a distinct point on l_2 for each point on l_1, so $|l_2| \geq |l_1|$. A symmetric argument shows that $|l_1| \geq |l_2|$, so $|l_1| = |l_2|$.
Proof of Claim: Suppose r, s are distinct points on l_1, and l_r, l_s, p_r, p_s are the associated lines/points as described above. l_r and l_s are both parallel to l_3, so by problem 4 they are parallel to one another. In particular, since $p_r \in l_r$ and $p_s \in l_s$, $p_r \neq p_s$.

Notation

- $f : A \to B$ means that f is a function with domain A and range B, i.e. f maps every element of A to exactly one element of B.
- \exists means ‘there exists’.
- \in means ‘is an element of’.
- $A \cap B$ is the set of all elements that are in both A and B (‘intersection’).
- $|A|$ is the number of elements in A.
- $A \setminus B$ is the set of all elements that are in A and not in B.