Number Theory

Theory of Divisors

Misha Lavrov

ARML Practice 9/29/2013
HMMT 2008/2. Find the smallest positive integer n such that $107n$ has the same last two digits as n.

IMO 2002/4. Let n be an integer greater than 1. The positive divisors of n are d_1, d_2, \ldots, d_k, where

$$1 = d_1 < d_2 < \cdots < d_k = n.$$

Define $D = d_1d_2 + d_2d_3 + \cdots + d_{k-1}d_k$.

(a) Prove that $D < n^2$.

(b) Determine all n for which D is a divisor of n^2.
Two numbers have the same last two digits just when they are the same mod 100, and

\[n \equiv 107n \pmod{100} \iff n \equiv 7n \pmod{100} \]
\[\iff 6n \equiv 0 \pmod{100} \]
\[\iff 6n = 100k \text{ for some } k \]
\[\iff n = 50 \cdot \frac{k}{3}. \]

So \(n \) must be a multiple of 50, and the smallest such positive number is 50 itself.

2. The IMO problem is left as an exercise.
We can arrange the divisors of 10000 in a square grid:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>625</td>
<td>1250</td>
<td>2500</td>
<td>5000</td>
<td>10000</td>
<td>6250</td>
</tr>
</tbody>
</table>

Questions:

- How many divisors of 10000 are divisors of 200?
- What is the sum of all the divisors of 10000? (Try to figure out how to avoid using brute force.)
- How many divisors does 10^{100} have?
- How many divisors does 3600 have?
Divisors of 10000

- We can arrange the divisors of 10000 in a square grid:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>1250</td>
<td>2500</td>
<td>5000</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

- Questions:
 - How many divisors of 10000 are divisors of 200?
 - What is the sum of all the divisors of 10000? (Try to figure out how to avoid using brute force.)
 - How many divisors does 10^{100} have?
 - How many divisors does 3600 have?
AIME 1998/5. If a random divisor of 10^{99} is chosen, what is the probability that it is a multiple of 10^{88}?

PUMaC 2011/NT A1. The only prime factors of an integer n are 2 and 3. If the sum of the divisors of n (including n itself) is 1815, find n.

Original. How many divisors x of 10^{100} have the property that the number of divisors of x is also a divisor of 10^{100}?
AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88}, which form a 12×12 grid. So the probability is

\[\frac{12 \cdot 12}{100 \cdot 100} = 0.0144. \]
AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88}, which form a 12×12 grid. So the probability is

$$\frac{12 \cdot 12}{100 \cdot 100} = 0.0144.$$

PUMaC 2011/NT A1. First note that 1815 factors as $3 \cdot 5 \cdot 11^2$. If $n = 2^a \cdot 3^b$, the sum of its divisors is

$$(1 + 2 + 4 + \cdots + 2^a)(1 + 3 + 9 + \cdots + 3^b).$$

The sums of powers of 2 begin $1, 3, 7, 15, 31, \ldots$ and the sums of powers of 3 begin $1, 4, 13, 40, 121, \ldots$. At this point we spot that $15 \cdot 121 = 1815$. This is $1 + 2 + 4 + 8$ times $1 + 3 + 9 + 27 + 81$, so n is $8 \cdot 81 = 648$.

Original. Since $10^{100} = 2^{100} \cdot 5^{100}$, x must also be of the form $2^a \cdot 5^b$, where $0 \leq a \leq 100$ and $0 \leq b \leq 100$.

The divisors of x form their own grid, with $a + 1$ columns (there are $a + 1$ choices for the power of 2, namely $2^0, 2^1, 2^2, \ldots, 2^a$) and $b + 1$ rows (there are $b + 1$ choices for the power of 5). The total number of divisors of x is $(a + 1)(b + 1)$.

If this number is also a divisor of 10^{100}, then both $a + 1$ and $b + 1$ must be products of 2’s and 5’s. There are no further restrictions on x. So $a + 1$ and $b + 1$ can each be one of:

$$1, 2, 4, 8, 16, 32, 64, \quad 5, 10, 20, 40, 80, \quad 25, 50, 100.$$

There are 15 possibilities for a and for b, so there are $15^2 = 225$ possibilities for x.
Warm-up Basics of divisors Taking equations mod n

Taking equations mod n
Pythagorean triples

Problem

*If x, y, z are integers and $x^2 + y^2 = z^2$, show that 60 divides xyz.***
Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^2 + y^2 = z^2$, show that 60 divides xyz.

- All three of x, y, z cannot be odd, since odd + odd = even. So xyz is even.
Taking equations mod \(n \)

Pythagorean triples

Problem

If \(x, y, z \) are integers and \(x^2 + y^2 = z^2 \), show that 60 divides \(xyz \).

- All three of \(x, y, z \) cannot be odd, since odd + odd = even. So \(xyz \) is even.

- Since \(1^2 \equiv 2^2 \equiv 1 \) (mod 3), all perfect squares are 0 or 1 mod 3. But \(x^2 + y^2 \equiv z^2 \) (mod 3) is not solved by making each of \(x^2, y^2, \) and \(z^2 \) be 1 mod 3. So one is 0 mod 3, and so \(xyz \) is divisible by 3.
Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^2 + y^2 = z^2$, show that 60 divides xyz.

- All three of x, y, z cannot be odd, since odd + odd = even. So xyz is even.

- Since $1^2 \equiv 2^2 \equiv 1 \pmod{3}$, all perfect squares are 0 or 1 mod 3. But $x^2 + y^2 \equiv z^2 \pmod{3}$ is not solved by making each of $x^2, y^2,$ and z^2 be 1 mod 3. So one is 0 mod 3, and so xyz is divisible by 3.

- Mod 5, we have $1^2 \equiv 4^2 \equiv 1$ and $2^2 \equiv 3^2 \equiv -1$. So $x^2 + y^2 \equiv z^2 \pmod{5}$ can look like $0 \pm 1 \equiv \pm 1$ or $1 - 1 \equiv 0$. So one of x, y, z is 0 mod 5, and xyz is divisible by 5.

These mean xyz is divisible by 30. Getting 60 is left as an exercise (Hint: try mod 8.)
Taking equations mod \(n \)

Pythagorean triples

Problem

If \(x, y, z \) are integers and \(x^2 + y^2 = z^2 \), show that 60 divides \(xyz \).

- All three of \(x, y, z \) cannot be odd, since odd + odd = even. So \(xyz \) is even.

- Since \(1^2 \equiv 2^2 \equiv 1 \pmod{3} \), all perfect squares are 0 or 1 mod 3. But \(x^2 + y^2 \equiv z^2 \pmod{3} \) is not solved by making each of \(x^2, y^2 \), and \(z^2 \) be 1 mod 3. So one is 0 mod 3, and so \(xyz \) is divisible by 3.

- Mod 5, we have \(1^2 \equiv 4^2 \equiv 1 \) and \(2^2 \equiv 3^2 \equiv -1 \). So \(x^2 + y^2 \equiv z^2 \pmod{5} \) can look like \(0 \pm 1 \equiv \pm 1 \) or \(1 - 1 \equiv 0 \). So one of \(x, y, \) or \(z \) is 0 mod 5, and \(xyz \) is divisible by 5.

- These mean \(xyz \) is divisible by 30. Getting 60 is left as an exercise (Hint: try mod 8.)
Taking equations mod n

Competition-level problems

Original. If x, y, z are integers and $x^2 + y^2 = 3z^2$, show that $x = y = z = 0$.

PUMaC 2007/NT B2. How many positive integers n are there such that $n + 2$ divides $(n + 18)^2$?

British MO 2005/6. Let n be an integer greater than 6. Prove that if $n - 1$ and $n + 1$ are both prime, then $n^2(n^2 + 16)$ is divisible by 720.

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p = a^4 + b^4 + c^4 - 3$ for some primes (not necessarily distinct) a, b, and c.
Taking equations mod n

Competition-level problems

Original. If x, y, z are integers and $x^2 + y^2 = 3z^2$, show that $x = y = z = 0$. (Hint: mod 3)

PUMaC 2007/NT B2. How many positive integers n are there such that $n + 2$ divides $(n + 18)^2$? (Hint: mod $n + 2$)

British MO 2005/6. Let n be an integer greater than 6. Prove that if $n - 1$ and $n + 1$ are both prime, then $n^2(n^2 + 16)$ is divisible by 720. (Hint: mod 2, 3, and 5)

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p = a^4 + b^4 + c^4 - 3$ for some primes (not necessarily distinct) a, b, and c. (Hint: mod 2, 3, and 5)
Taking equations mod n

Solutions

Original. If $x^2 + y^2 = 3z^2$, then $x^2 + y^2 \equiv 0 \pmod{3}$, which is only possible if $x \equiv y \equiv 0 \pmod{3}$. So both x and y are divisible by 3, so $x^2 + y^2$ is divisible by 9, and therefore z^2 is divisible by 3.

We now have $(x/3)^2 + (y/3)^2 = 3(z/3)^2$, so the same is true of $x/3, y/3, z/3$. But the numbers cannot have infinitely many factors of 3 unless they are all 0.
Taking equations mod n

Solutions

Original. If $x^2 + y^2 = 3z^2$, then $x^2 + y^2 \equiv 0 \pmod{3}$, which is only possible if $x \equiv y \equiv 0 \pmod{3}$. So both x and y are divisible by 3, so $x^2 + y^2$ is divisible by 9, and therefore z^2 is divisible by 3.

We now have $(x/3)^2 + (y/3)^2 = 3(z/3)^2$, so the same is true of $x/3, y/3, z/3$. But the numbers cannot have infinitely many factors of 3 unless they are all 0.

PUMaC 2007/NT B2. Since $n + 18 \equiv 16 \pmod{n + 2}$, $(n + 18)^2 \equiv 16^2 \pmod{n + 2}$ We are given $(n + 18)^2 \equiv 0 \pmod{n + 2}$, so $16^2 \equiv 0 \pmod{n + 2}$, which means $n + 2$ divides 256. Therefore $n + 2$ is one of $2^2, 2^3, \ldots, 2^8$, which gives 7 solutions.
BMO 2005/6. Divisibility by 144 is easy. Neither \(n + 1 \) nor \(n - 1 \) is even, so \(n \) must be even; and neither \(n + 1 \) nor \(n - 1 \) is divisible by 3, so \(n \) must be divisible by 3. Therefore \(n = 6k \), and

\[
 n^2(n^2 + 16) = (6k)^2((6k)^2 + 16) = 144 \cdot k^2(9k^2 + 4).
\]

Now all we need is divisibility by 5. Since neither \(n + 1 \) nor \(n - 1 \) is divisible by 5, we have one of \(n \equiv 0, 2, 3 \pmod{5} \). Fortunately,

\[
\begin{align*}
0^2(0^2 + 16) &= 0 \equiv 0 \quad \pmod{5} \\
2^2(2^2 + 16) &= 80 \equiv 0 \quad \pmod{5} \\
3^2(3^2 + 16) &= 225 \equiv 0 \quad \pmod{5}.
\end{align*}
\]

So in all three cases, \(n^2(n^2 + 16) \) is divisible by 5.
Taking equations mod \(n \)

Solutions

PUMaC 2009/NT A3. The primes 2, 3, and 5 have the following property: if \(p \) is one of 2, 3, or 5, then either \(a \equiv 0 \pmod{p} \) or \(a^4 \equiv 1 \pmod{p} \). This is easy to check:

\[
\begin{align*}
1^4 & \equiv 1 & \pmod{2} \\
1^4 & \equiv 2^4 \equiv 1 & \pmod{3} \\
1^4 & \equiv 2^4 \equiv 3^4 \equiv 4^4 \equiv 1 & \pmod{5}.
\end{align*}
\]

Suppose none of \(a, b, \) or \(c \) are 2. They are prime, so not divisible by 2. But then

\[
p = a^4 + b^4 + c^4 - 3 \equiv 1 + 1 + 1 - 3 \equiv 0 \pmod{2}
\]

and \(p \) is divisible by 2 (but it’s easy to check \(p = 2 \) doesn’t work). So one of \(a, b, \) or \(c \) has to be 2.

The same argument shows that one of \(a, b, \) or \(c \) has to be 3, and one has to be 5. This means \(p = 2^4 + 3^4 + 5^4 - 3 = 719 \).