
This is not a Power Round
The Clubs of Oddberg: Solutions

ARML Practice 5/26/2013

1. Prove that no two clubs can have the exact same set of members.

Suppose that the conclusion is false; let C1 and C2 be two clubs with the same set of members.
Then |C1| = |C2| = |C1 ∩C2|; either |C1| and |C2| are even, contradicting rule A, or |C1 ∩C2|
are odd, contradicting rule B.

Therefore the conclusion must be true.

2. Prove that it’s possible for Oddberg to have at least 1000 clubs.

To do this, we must demonstrate a configuration of 1000 clubs that follows all the rules. The
simplest such configuration is one in which every citizen is in a club containing nobody else.
This yields 1000 clubs with 1 citizen each (1 is odd), and any two clubs have 0 citizens in
common (0 is even).

A more complicated way to do this is to construct clubs C1, . . . , C1000 where club Ci consists
of everybody except the i-th citizen. This yields 1000 clubs with 999 citizens each (999 is
odd), and any two clubs have 998 citizens in common (998 is even).

3. Prove that at least one citizen is in an odd number of clubs.

Pick an arbitrary club C. For each member of the club C, count the total number of clubs
that citizen is a member of.

This is an odd number, because we can count it in a different way: club C contributes |C| to
the count, and every other club C ′ contributes |C ∩C ′| to the count, so we’re adding together
an odd number and many even numbers.

Therefore at least one of the numbers we add is odd, which means at least one member of C
is in an odd number of clubs.

(Incidentally, this proof fails if there are no clubs at all, which is the sole counterexample.)

4. Show that C1 ⊕ C2 contains an even number of citizens.

We can write |C1 ⊕C2| as |C1 ∪C2| − |C1 ∩C2| = |C1|+ |C2| − 2|C1 ∩C2|. (The second step
here uses the principle of inclusion-exclusion.) This is an odd number, plus an odd number,
minus an even number, so the result is even.

We will use the formula |C1 ⊕ C2| = |C1|+ |C2| − 2|C1 ∩ C2| many times later on.

5. Now extend the club addition operation to more than two clubs, by taking

C1 ⊕ C2 ⊕ · · · ⊕ Ck := ((((C1 ⊕ C2) ⊕ C3) ⊕ · · · ) ⊕ Ck).
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(a) Prove that this definition does not depend on the order of C1, C2, . . . , Ck.

We will prove that C1 ⊕C2 ⊕ · · · ⊕Ck can be characterized in a different way: a citizen
is a member of this sum if and only if the citizen is a member of an odd number of
C1, . . . , Ck.

Let Si be the partial sum C1 ⊕C2 ⊕ · · · ⊕Ci. If a citizen is not a member of Ci+1, then
going from Si to Si+1 does not affect that citizen: he will be in neither or both. If the
citizen is a member of Ci+1, then going from Si to Si+1 will affect that citizen: either
he is in Si but not Si+1, or in Si+1 but not Si.

We may stat with S0 being the empty group, so no citizen is a member of it. If a
citizen is in m of the clubs C1, C2, . . . , Ck, then as we go from S0 to Sk, the citizen’s
membership will switch m times. Therefore if m is odd, the citizen will be a member of
Sk = C1 ⊕ C2 ⊕ · · · ⊕ Ck, and if m is even, the citizen will not be a member.

(b) For the remainder of these problems, we may assume C1, C2, . . . , Ck are all
different. To justify this, explain what happens when the same club occurs
multiple times in C1, C2, . . . , Ck.

If a club C occurs multiple times, the only thing that affects the characterization in 6(a)
is whether C occurs an even or an odd number of times. If C occurs an even number
of times, then it may as well not be included at all, and if C occurs an odd number of
times, then including it once will have the same effect.

6. It turns out that when k is odd, C1 ⊕ C2 ⊕ · · · ⊕ Ck satisfies almost all the
requirements of being a club:

(a) Prove that for any club D which is not one of C1, C2, . . . , Ck, the sum C1 ⊕
C2 ⊕ · · · ⊕ Ck and D have an even number of citizens in common.

We induct on k. For k = 1, we need to prove that when D 6= C1, C1 and D have an
even number of citizens in common, which follows from rule B.

For the inductive step, let Sk = C1⊕C2⊕ · · · ⊕Ck. Then (by the inductive hypothesis)
|Sk ∩D| is even, and (by rule B) |Ck+1 ∩D| is also even. We want to show that if Sk+1

is defined as Sk ⊕ Ck+1, then |Sk+1 ∩D| is even.

We can write |Sk+1 ∩D| as |Sk ∩D| + |Ck+1 ∩D| − 2|Sk ∩ Ck+1 ∩D|. This is an even
number, plus an even number, minus twice some number, so it’s even (compare this to
the solution to problem 4).

By induction, |Sk ∩D| is even for all k.

(b) Prove that C1 ⊕C2 ⊕ · · · ⊕Ck contains an even number of citizens when k is
even, and an odd number of citizens when k is odd.

We need to show that |Sk| and |Sk+1| have different parity: if Sk is even, then Sk+1 is
odd, and vice versa.

By rule A, Ck+1 is odd. So |Sk ⊕ Ck+1| = |Sk| + |Ck+1| − 2|Sk ∩ Ck+1|, which is |Sk|,
plus an odd number, minus an even number. This changes the parity of |Sk|.

2



(The result we want follows by induction on k, since we have verified it already for
k = 2.)

7. Nevertheless, C1 ⊕ C2 ⊕ · · · ⊕ Ck can never be a club in Oddberg, even when k
is odd (unless k is 1). Why not?

C1 ⊕ C2 ⊕ · · · ⊕ Ck always has an odd number of citizens in common with any of the clubs
C1, C2, . . . , Ck, violating rule B if it were to be made a club. Here’s why.

The order of C1, C2, . . . , Ck does not matter so we will just show that rule A would be violated
for C1. We induct on k: when k = 1, S1 = C1, so |S1 ∩ C1| = |C1| is odd. Going from Sk

to Sk+1, each member of |C1 ∩ Ck+1| either changes from being included in the group to not
being included, or vice versa (which contributes 1 or −1 to the difference between |Sk ∩ C1

and |Sk+1∩C1|), and there is an even number of citizens in |C1∩Ck+1|, by rule B. So |Sk∩C1|
continues to be odd for all k.

An equivalent statement is that C1 ⊕ C2 ⊕ · · · ⊕ Ck must always contain at least
one citizen (unless k is 0). Why is this equivalent?

If C1⊕C2⊕· · ·⊕Ck were the empty group, then we would also have C1⊕C2⊕· · ·⊕Ck−1 = Ck

(check this!), which is a club in Oddberg, so it must satisfy all the conditions, contrary to
the previous statement. So counterexamples to the two statements can easily be transformed
into each other.

8. Suppose Oddberg has n clubs. Show that it must have 2n distinct gatherings.

The way to get 2n gatherings is to form all possible sums C1 ⊕ C2 ⊕ · · · ⊕ Ck: there are 2n

of these, because for each of n clubs, we have the choice to include it in the sum, or not to
include it.

To see that these gatherings are all distinct, we use the previous problem. Suppose they were
not distinct: then we would have a counterexample of the form

C1 ⊕ C2 ⊕ · · · ⊕ Ck = Ck+1 ⊕ Ck+1 ⊕ · · · ⊕ Cm.

But then C1 ⊕ C2 ⊕ · · · ⊕ Cm would be the empty group, which is impossible by problem 7.

9. Conclude that Oddberg can have at most 1000 clubs.

If Oddberg had 1001 or more clubs, then it would have 21001 or more distinct gatherings. But
this is impossible: there are only 21000 possible groups of citizens.
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