Combinatorial Game Theory

Misha Lavrov

ARML Practice 2/10/2013

There are two kinds of games

Problem (1)

Suppose tic-tac-toe is played on a 4×4 board, but the first player to claim 4 squares on a line loses. Find a strategy that allows the second player to avoid losing.

Problem (2)

In two-step chess, players take turns making two moves at a time: first White moves twice, then Black moves twice, and so on.

Prove that if both players play optimally, White is guaranteed at least a draw: that is, Black has no foolproof winning strategy.

Misère tic-tac-toe and pairing strategies

- Match the squares of the 4×4 board in pairs:

A	B	C	D
E	F	G	H
E	F	G	H
A	B	C	D

- Whenever the first player claims a square, the second player should claim the matching square.

Misère tic-tac-toe and pairing strategies

- Match the squares of the 4×4 board in pairs:

A	B	C	D
E	F	G	H
E	F	G	H
A	B	C	D

- Whenever the first player claims a square, the second player should claim the matching square.
- A line of 4 squares with only 2 different letters on it can't possibly matter in the end: neither player will claim all of it.
- If a line of 4 squares has 4 different letters, the other 4 squares with those letters also form a line. Therefore if the second player ends up claiming the first line, the first player must have already claimed the second line, and lost.

Two-step chess and strategy stealing

- Suppose Black had a winning strategy. White can begin with a "null move" (e.g. Nb1-c3-b1) that doesn't change the position, and then follow this winning strategy with all the colors reversed. Contradiction!

Two-step chess and strategy stealing

- Suppose Black had a winning strategy. White can begin with a "null move" (e.g. Nb1-c3-b1) that doesn't change the position, and then follow this winning strategy with all the colors reversed. Contradiction!
- This is known as a "strategy stealing" argument. It applies to any game in which a move can be made that can't possibly hurt you (tic-tac-toe is a good example).
- Notably, the strategy stealing argument says nothing about what the strategy actually is.

Examples

Problem (Golomb and Hales, Hypercube Tic-Tac-Toe, 2002)

Find a strategy allowing the second player to force a draw in (ordinary) 5×5 tic-tac-toe.

Problem (USAMO 2004/4)

Alice and Bob play a game on a 6×6 grid. They take turns writing a number in an empty square of the grid; Alice goes first. When all squares are filled, the square in each row with the largest number is colored black. Alice wins if she can then draw a straight line (possibly diagonal) connecting two opposite sides of the grid that stays entirely in black squares.

Find, with proof, a winning strategy for one of the players.

Solution: 5×5 tic-tac-toe

- The second player can play according to the following pairing strategy:

- Each row, column, and diagonal contains two paired squares; as soon as the first player claims one of them, the second player claims the other, and therefore the first player cannot claim the whole line.

Solution: USAMO 2004/4

- Bob selects 3 squares in each row as follows:

X				X	X
			X	X	X
		X	X	X	
	X	X	X		
X	X	X			
X	X				X

Solution: USAMO 2004/4

- Bob selects 3 squares in each row as follows:

X				X	X
			X	X	X
		X	X	X	
	X	X	X		
X	X	X			
X	X				X

- Bob can ensure that no marked square is colored black by following two rules:
- When Alice writes a number on a marked square, Bob writes a higher number on an unmarked square in the same row.
- When Alice writes a number on an unmarked square, Bob writes a lower number on a marked square in the same row.

Winning and losing positions

- An impartial game is one in which the only difference between the two players is that one goes first (in particular, there can be no pieces "belonging" to one player).

Winning and losing positions

- An impartial game is one in which the only difference between the two players is that one goes first (in particular, there can be no pieces "belonging" to one player).
- Impartial games can be studied by classifying all possible positions into winning and losing positions:
- A winning position is one in which it is either possible to win in one move, or else a move exists that brings it to a losing position.
- A losing position is one in which every move either loses immediately or leads to a winning position.

Winning and losing positions

- An impartial game is one in which the only difference between the two players is that one goes first (in particular, there can be no pieces "belonging" to one player).
- Impartial games can be studied by classifying all possible positions into winning and losing positions:
- A winning position is one in which it is either possible to win in one move, or else a move exists that brings it to a losing position.
- A losing position is one in which every move either loses immediately or leads to a winning position.
- Once all positions are classified, they determine the winning player and provide a strategy.

Problems with impartial games

Problem ("Bachet's Game")

There are n tokens on the table. Two players take turns removing any number of tokens between 1 and k from the table. The player that takes the last token wins. Assuming optimal play, for what values of n and k does the first player win?

Problem (2009 Mathcamp Qualifying Quiz, Problem 6)

Two players play a game by starting with the integer 1000, and taking turns replacing the current integer N with either $\left\lfloor\frac{N}{2}\right\rfloor$ or $N-1$. The player that moves to 0 wins. Assuming optimal play, which player has a winning strategy?

Bachet's Game

- We will classify the possible positions carefully as either winning or losing.

Bachet's Game

- We will classify the possible positions carefully as either winning or losing.
- The positions with $1,2, \ldots, k$ tokens on the table are winning.

Bachet's Game

- We will classify the possible positions carefully as either winning or losing.
- The positions with $1,2, \ldots, k$ tokens on the table are winning.
- The position with $k+1$ tokens on the table is losing (any move leads to one of the k positions above).

Bachet's Game

- We will classify the possible positions carefully as either winning or losing.
- The positions with $1,2, \ldots, k$ tokens on the table are winning.
- The position with $k+1$ tokens on the table is losing (any move leads to one of the k positions above).
- The positions with $(k+1)+1, \ldots,(k+1)+k$ tokens on the table are winning; there is a move from them to $k+1$, and so on.

Bachet's Game

- We will classify the possible positions carefully as either winning or losing.
- The positions with $1,2, \ldots, k$ tokens on the table are winning.
- The position with $k+1$ tokens on the table is losing (any move leads to one of the k positions above).
- The positions with $(k+1)+1, \ldots,(k+1)+k$ tokens on the table are winning; there is a move from them to $k+1$, and so on.
- From here, we can see that the positions with a multiple of $k+1$ tokens on the table are the only losing positions. The first player wins provided n is not divisible by $k+1$, and the winning strategy is to always leave a multiple of $k+1$ tokens on the table.

The Mathcamp problem

- We first prove that every position N where N is odd is a winning position.

The Mathcamp problem

- We first prove that every position N where N is odd is a winning position.
- We induct on N. When $N=1$, a single move wins so this is a winning position.
- For $N=2 k+1$, we can move to k or $2 k$. If k is losing then $2 k+1$ is winning.
- If k is winning then $2 k$ is losing (the only possible moves are to k and $2 k-1$, both of which are winning), so $2 k+1$ is still winning.

The Mathcamp problem

- We first prove that every position N where N is odd is a winning position.
- We induct on N. When $N=1$, a single move wins so this is a winning position.
- For $N=2 k+1$, we can move to k or $2 k$. If k is losing then $2 k+1$ is winning.
- If k is winning then $2 k$ is losing (the only possible moves are to k and $2 k-1$, both of which are winning), so $2 k+1$ is still winning.
- 125 and 249 are winning, so 250 is losing; therefore 500 is winning. Since 999 is also winning, 1000 is losing.

The Mathcamp problem

- We first prove that every position N where N is odd is a winning position.
- We induct on N. When $N=1$, a single move wins so this is a winning position.
- For $N=2 k+1$, we can move to k or $2 k$. If k is losing then $2 k+1$ is winning.
- If k is winning then $2 k$ is losing (the only possible moves are to k and $2 k-1$, both of which are winning), so $2 k+1$ is still winning.
- 125 and 249 are winning, so 250 is losing; therefore 500 is winning. Since 999 is also winning, 1000 is losing.
- In general, if $N=2^{\ell} \cdot(2 k+1)$, then N is a winning position if and only if ℓ is even.

