1. Definition of the Laplace transform: \[L(f) = \int_0^\infty e^{-st} f(t) \, dt \]

Denote \(L(f) = F(s) \)

2. Definition of the step function: \(u_c(t) = u(t-c) = \begin{cases} 0 & t < c \\ 1 & t \geq c \end{cases} \)

3. First translation Theorem (Direct form)

\[
L(u_c(t)f(t-c)) = L(u(t-c)f(t-c)) = e^{-cs}L(f(t)) = e^{-cs}F(s)
\]

4. First translation Theorem (Inverse form)

\[
u_c(t)f(t-c) = u(t-c)f(t-c) = L^{-1}(e^{-cs}F(s))
\]

5. Second translation Theorem (Direct form)

\[
L(e^{ct}f(t)) = F(s-c) = L(f(t)) \bigg|_{s\to s-c}
\]

6. Second translation Theorem (Inverse form)

\[
L^{-1}(F(s-c)) = L^{-1}(F(s) \bigg|_{s\to s-c}) = e^{ct}f(t)
\]