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Abstract. In this paper, we study mesoscopic behavior of a grain boundary system and in-
vestigate the possibility of modeling texture evolution. One of the most challenging aspects of this
problem is to understand the role of topological reconfigurations during coarsening. To this end,
we investigate grain boundary evolution in a one-dimensional system designed specifically to target
critical event evolution in microstructure. We suggest stochastic frameworks that may be used to
model this system. We compare the predictions of the models with simulations and discuss their
limitations and possible extensions to higher-dimensional cases.

1. Introduction. Most technologically useful materials arise as polycrystalline
microstructures, composed of myriads of small crystallites, called grains, separated by
their interfaces, called grain boundaries. The energetics and connectivity of the net-
work of boundaries are implicated in many properties across wide scales, for example,
functional properties, like conductivity in microprocessors, and lifetime properties,
like fracture toughness in structures. Preparing arrangements of grains and bound-
aries suitable for a given purpose is a central problem in materials science. It likewise
presents many challenges for mathematical modeling, simulation, and analysis. His-
torical emphasis here has been on the geometry, or more exactly, on statistics of simple
geometric features of experimental and simulated polycrystalline networks. We are
now turning our attention to texture, the mesoscopic description of arrangement and
properties of the network described in terms of both geometry and crystallography.

There is a great wealth of experimental work available concerning texture in poly-
crystalline systems: it has, after all been of recognized importance since the stone age
[1]. In recent years, we have witnessed a changing paradigm in the materials labo-
ratory with the introduction of automated data acquisition technologies. This has
permitted the collection of statistics on a vast scale and their use to optimize as-
pects of material behavior. There are situations, for example, where it is possible to
quantify the amount of alignment or misalignment sufficient to produce a corrosion
resistant microstructure. To rise beyond this level of anecdotal observation, the ther-
modynamics of the material system must be related to texture and texture related
properties. Said in a different way, are there any texture related distributions which
are material properties? Some geometric features of the configuration, like relative
area statistics have these properties in the sense that they are robust but they are not
strongly related to energetics. Recent work has provided us with a new statistic, the
grain boundary character distribution, which has enormous promise in this direction.
The grain boundary character distribution is a measure of relative amount of grain
boundary with a given net misorientation. Owing to our new ability to simulate the
evolution of large scale systems, we have been able to show that this statistic is robust
and, in elementary cases, easily correlated to the grain boundary energy (see [7], [8]).

We stress, however, that the mechanisms by which the distribution develops
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from an initial population are not yet understood. As a polycrystalline configuration
coarsens, facets are interchanged and some grains grow larger and others disappear.
These critical events determine the evolution of our distribution. This is because the
system coarsens by the motion of the triple junctions, with low energy boundaries
sweeping out those of higher energy. The triple junction population, in turn, is deter-
mined by the critical events. The regular evolution of the network is governed by the
Mullins Equations of curvature driven growth introduced in [2],[3],[4], supplemented
by the Herring Condition force balance at triple junctions, a system of parabolic equa-
tions with complementing boundary conditions, as shown in [5] and [6]. Some of the
most popular theories based on these results are summarized in [9] and [10]. The
critical events, on the other hand, have not yet received such an extensive treatment,
while they play a very important role in the interface evolution.

The major difficulty in developing a theory of the grain boundary character dis-
tribution lies in the lack of understanding of these stochastic events. In this work we
concentrate our effort on the mechanisms governing these processes. Here we shall
investigate a simplified 1-dimensional model that serves as a surrogate, exhibiting the
main features of the interacting grain boundary network. In this model, we shall have
boundaries and junctions between boundaries moving under a form of gradient flow.
It is introduced precisely in the section 2.

There are several approaches one might adopt to describe the behavior of the
grain boundary character density, from purely deterministic to stochastic. In a recent
paper ([11]), we present a statistical model for critical events from the point of view
of fractional continuous time random walks and show its relation to the stochastic
Poisson type equations. Here we focus our attention on the strategies inspired by
statistical theory of gases. Motivated by the apparent presence of stationary distri-
butions resulting from the statistical analysis of such a system as described in section
3, we consider several theoretical frameworks capable of describing it. In section 4 we
look at the evolution of boundaries based on associated orientation parameters. We
propose several Fokker-Planck and birth-death type of equations to model early stages
of the process with some success. The advantage of this approach is its low complex-
ity and ability to successfully model the initial stages of the evolution. A framework
based on statistical mechanics is introduced in section 5 to remedy some drawbacks of
the previous approach. We construct a Boltzmann-type equation modeling grain in-
teraction which can successfully reproduce simulation data with the adequate choice
of parameters and has a good potential for generalization to higher dimension. In
fact, it appears that this approach can yield even better results in 2D due to the
restrictions that 1-dimensional problem poses on grain interactions, in contrast to its
visual simplicity. We show that both short and long time behavior of the system can
be completely recovered by introducing an extended set of parameters. The analysis
of the role played by the nearest neighbor dependence on the dynamics of critical
events that we identified in this study sheds a new light on the discussion of interface
driven growth in general.

The purpose of this paper is to summarize some of the numerical observations and
theoretical approaches associated with this kind of systems. We propose the birth-
death and Boltzmann type theories that have a potential for successfully describing
each stage of the grain growth dynamics in the higher dimensional systems.

2. Model description. To construct our one dimensional model, consider inter-
vals [xi, xi+1], i = 0, . . . , n, on the line, which may vary in time, where, for simplicity,
we assume the periodicity condition x0 = xn. For each interval [xj , xj+1], choose
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a number αj from the set {αi}i=1,...,n. The intervals [xj , xj+1] are viewed as grain
boundaries and the points xj correspond to triple points. The parameters {αi}i=1,...,n

represent orientations in some sense. lj = xj+1 − xj is the length of the jth grain
boundary. Now choose a non-negative potential f(α) and define the energy

En(t) =
∑

f(αi)(xi+1(t) − xi(t)) (2.1)

Consider the gradient flow dynamics characterized by the system of ordinary
differential equations

ẋi = f(αi) − f(αi−1), i = 0, . . . , n. (2.2)

The parameter αi is prescribed for each grain boundary initially according to
some random distribution and does not change during its lifetime. The velocities of
the grain boundaries can be computed from the relation

vi = ẋi+1 − ẋi = f(αi+1) + f(αi−1) − 2f(αi) (2.3)

Notice that the velocities remain constant until the moment a neighboring grain
boundary collapses, at which instant a jump of the velocity occurs. Every such crit-
ical event changes the statistical state of the model through its effect on the grain
boundary velocities and therefore affects further evolution of the grains. Notice that
the lengths of the individual grain boundaries vary linearly between the corresponding
jump events and depend entirely on the corresponding grain boundary velocities.

An important feature of the thermodynamics of grain growth is that it is dissi-
pative for the energy during normal grain growth. We will now show that the model
introduced above is in fact a precise analogy of the system of grain boundaries, includ-
ing the dissipative behavior throughout its lifetime. At critical events, the algorithm is
designed to enforce dissipation. We check that (2.2) is also dissipative. First consider
a time t when there is no critical event. Then

dEn

dt
(t) =

∑

f(αi)vi

=
∑

f(αi)(f(αi+1) − f(αi) − f(αi) + f(αi−1))

=
∑

f(αi)(f(αi+1) + f(αi−1) − 2
∑

f(αi)
2

≦ 2(
∑

f(αi)
2)

1

2 (
∑

f(αi)
2)

1

2 − 2
∑

f(αi)
2

= 0

by periodicity and the Schwarz Inequality. Now suppose that the grain boundary
[xc, xc+1] vanishes at time t = tcrit and, for simplicity, it is the only vanishing grain
boundary. Then the velocity of that boundary vc(t) < 0, t < tcrit, namely,

1

2
(f(αc+1) + f(αc−1)) < f(αc).

and lc → 0 for t → t−crit. Now

En(t) >
∑

i 6=c

f(αi)li, t < tcrit,
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and

En(tcrit) = lim
t→tcrit

∑

i 6=c

f(αi)li ≦ lim
t→tcrit

En(t)

and we have checked that the model system is dissipative.
From the materials science perspective, it is important to know the distributions

of relative lengths, as well as grain boundary orientations. Since the changes in grain
boundary velocities have a strong influence on the evolution of the system, we want to
either keep the velocity as a separate variable in the equation or to have the possibility
to compute it. In the most general case, we consider a state space S = {(l, v, α)},
where l ∈ R

+, v ∈ R, α ∈ (a, b).
Our long term goal is to obtain the set of equations describing time evolution of

the joint probability density function ρ(l, v, α), the discrete analogue of which up to
an appropriate normalization has the form

ρ(l, v, α) =
∑

i,j,k

δ(l − li)δ(v − vj)δ(α − αk). (2.4)

In this study we look at the evolution of the marginal densities

ρlen(l, t) =
∑

i δ(l − li),
ρvel(v, t) =

∑

j δ(v − vj),

ρor(α, t) =
∑

k δ(α − αk).

In addition, it is of particular interest for materials science applications to describe
the evolution of the lengths ordered by orientations:

ρw(α, t) =
∑

i

li(t)δ(α − αi),

which in the absence of dependence on a normal direction coincides with the grain
boundary character distribution. The set of quantities introduced above would com-
pletely describe the dynamics of the one-dimensional grain growth model generated
by the gradient flow equation (2.2). Moreover, the associated evolution equations, if
found, should provide a significant insight into the global problem of texture develop-
ment in polycrystalline materials microstructure.

3. Simulation statistics. The first step towards a mesoscopic model is the
identification of stable statistics. If it turns out that the distributions behave chaoti-
cally or fail to stabilize, the analysis will be much more complicated. That is why we
undertook the task of simulating the 1-dimensional system described above according
to the laws of motion (2.3). The statistics of several numerical experiments for a sys-
tem of 10000 grain boundaries is presented below. We refer to each grain boundary
disappearance event as a simulation ”step”. Hence, unless there are coincident events,
7000 grain boundaries disappear exactly after 7000 steps.

Figure 3.1 shows evolution of the relative area and relative velocity distributions
for the case of a single well potential, which stays approximately the same for other
choices of f . Both statistics do not change their shape in the later part of the simula-
tion, however, their spread narrows as time goes on since fewer and fewer grains take
part in the statistics. In this figure, the axes are scaled accordingly and we observe
the stabilization of both distributions.
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Fig. 3.1. Evolution of marginal pdf for: (a) relative length, (b) relative

velocities for f = (x − 0.5)2

In the Figure 3.2 we look at the similar distributions for orientation parameters
α for the choice of f having a single or triple minima. The graphs clearly show that
the shapes of f and orientations distribution are inversely correlated.

The existence of stable statistics for both length, velocities and orientations mo-
tivates the search for a suitable statistical model for this type of dynamics.
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Fig. 3.2. Distribution of the orientations for (a) f(x) = (x − 0.5)2, (b) f(x) = (x −

0.5)2(x − 1)2(x − 1.5)2

4. Birth-death model. We will now attempt to derive the evolution equations
for the quantities ρlen(l, t) and ρvel(v, t) based on their interconnection with the distri-
bution of orientations ρor(α, t). The approach given below is based on the birth-death
interpretation of the dynamics of orientations. Indeed, during each critical event some
orientations disappear and new orientations develop. In order to quantify the associ-
ated birth and death rates, let us introduce the following framework.

We start by introducing relevant quantities and analyzing their relationships.

4.1. Notations and useful relationships. Since it is the energies of α and
not orientations themselves that play a role in the dynamics of this system, we will
be working with the distribution energies associated to given orientations

ρf (f(α), t) =
∑

i

δ(f(α) − f(αi)),
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rather than ρor. There is a straightforward relationship between the two. Indeed,
recall that for any f =

∑

fjI(supp(fj)) with strictly monotone and differentiable
functions fj ,

ρf (f, t) =
∑

(ρor ◦ f−1
j )(t)/(f ′

j(f
−1
j )(t)),

where I(A) is the indicator function of a set A and ρor(α, t) =
∑

k δ(α − αk) is the
distribution of orientations. For each monotone part we have

(Ef)(t) =

∫

f(α)ρf (f(α), t)df(α) =
∫

f(α)(ρor ◦ f−1)[f(α)/(f ′(f−1)(f(α)))] df(α) =

∫

f(α)ρor(α, t)dα.

This corresponds to a change of variables from α to f(α). Let us denote the average
of v conditioned on given α as

〈v|α〉(t) =

∫

v′ρvel(v
′, t|α)dv′.

Notice that the the velocity of the i-th grain boundary with orientation α = αi is
related to the neighboring orientations through

vi(t) = (f(αi+1) − f(α)) + (f(αi−1) − f(α)) = v1 + v2.

with v1 = f(αi+1) − f(α) and v2 = f(αi−1) − f(α). For the purpose of deriving
the precise expression for 〈v|α〉(t), we have to assume independence of αi of the
neighboring grain boundary orientations αi−1 and αi+1. The implications and validity
of this assumption will be discussed at the end of this section.

Theorem 4.1. If α = αi is independent of αi−1 and αi+1, mean velocity of grain

boundaries with orientation α is given by

〈v|α〉(t) = 2

∫

[f(α′) − f(α)]df(α′). (4.1)

Proof. Due to the independence assumption,

ρvel(v, t|α) = ρv1
(v, t) ∗ ρv2

(v, t).

Since

P(v1 < v) = P(f(αi+1) − f(α) < v) = P(f(αi+1) < f(α) + v)

and

P(v2 < v) = P(f(αi−1) − f(α) < v) = P(f(αi−1) < f(α) + v),

with f(αi−1) and f(αi+1) being distributed according to a common density ρf , we
get

ρv1
(v, t) = ρf (f(α) + v, t)

ρv2
(v, t) = ρf (f(α) + v, t).
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In other words,

ρvel(v, t|α) =

∫

ρv1
(s, t)ρv2

(v − s, t)ds =

∫

ρf (s + f(α), t)ρf(v − s + f(α), t)ds.

It follows that

〈v|α〉(t) =

∫

v
[

∫

ρf (s + f(α), t)ρf(v − s + f(α), t)ds
]

dv

=

∫

[

∫

vρf (v − s + f(α), t)dv
]

ρf (s + f(α), t)ds

=

∫

[

∫

(u + s − f(α))ρf (u, t)du
]

ρf (s + f(α), t)ds

=

∫

[

(Ef)(t) + (s − f(α))
]

ρf (s + f(α), t)ds

= 2[(Ef)(t) − f(α)]

We obtain the following relationship:

〈v|α〉(t) = 2

∫

[f(α′) − f(α)]df(α′).

This has a clear physical interpretation: grain boundaries with interfacial energies
higher than current average energy have negative mean velocity, hence tend to shrink,
while those with lower energies tend to grow.

4.2. Evolution of orientations in 1d. Let us now turn our attention to the
evolution of unweighted α population ρor(α, t) =

∑

i δ(α − αi).
Theorem 4.2. Under the assumption of independence of αi, αi−1 and αi+1, the

evolution for orientations satisfies

∂ρor(α, t)

∂t
= −ρlen(0, t|α)〈v|α〉(t) (4.2)

Proof. By computing the impact of ”death” events on the overall population of
the orientations, we can write

ρor(α, t + ∆t) − ρor(α, t) = {surviving boundaries} − {dead boundaries}

= 0 −
∑

l−v∆t≤0

δ(α − αi) = −P0(α).

The ”death probability” P0 associated with some fixed α can be computed as follows:

P0(α) =

∫ ∫

l−v∆t≤0

ρvel(v, t|α)ρ1(l, t|α)dl dv

=

∫

ρvel(v, t|α)

∫ v∆t

0

ρlen(l, t|α)dl dv

=

∫

ρvel(v, t|α)

∫ v∆t

0

(ρlen(0, t|α) + lρ′len(0, t|α))dl dv

=

∫

ρvel(v, t|α)(ρlen(0, t; α)v∆t + (v∆t)2ρ′len(0, t|α)/2)dv

= ρlen(0, t|α)〈v|α〉(t)∆t + 0(∆t)2.
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This gives the following evolution equation for the distribution of orientations:

∂ρor(α, t)

∂t
= −ρlen(0, t|α)〈v|α〉(t)

4.3. Evolution of grain boundary character distribution in 1d. Analo-
gously, we can derive the evolution of weighted population

ρw(α, t) =
∑

i

li(t)δ(α − αi),

which in one-dimensional case coincides with the sought grain boundary character
distribution.

Theorem 4.3. Under the assumption of independence of αi, αi−1 and αi+1, the

evolution of orientations weighted with relative lenghts satisfies

∂ρw(α, t)

∂t
= 2

[

∫

f(α′, t)ρw(α′, t)dα′
]

ρw(α, t) − 2f(α, t)ρw(α, t) (4.3)

Proof.
Similarly to the unweighted case,

ρw(t + ∆t) − ρw(t) = {boundaries growing/shrinking} − {dead boundaries}

=
∑

(li(t + ∆t) − li(t))δ(α − αi) −
∑

l−v∆t≤0

li(t)δ(α − αi)

= ∆t
∑

vi(t)δ(α − αi) = ∆t
∑

vi(t)δ(α − αi)δ(v − vi)

= ∆t

∫

v(t)ρvel(v|α, t)dv = ∆t

∫

v(t)ρvel(v|α, t)ρw(α, t)dv

= ∆t〈v|α〉(t)ρw(α, t).

Hence the evolution equation for ρw takes on the form

∂ρw(α, t)

∂t
= 〈v|α〉(t)ρw(α, t).

Taking into account equation (4.1),

∂ρw(α, t)

∂t
= 2

[

∫

(f(α′) − f(α, t))ρw(α′, t)dα′
]

ρw(α, t)

We can rewrite it in a slightly different form

∂ρw(α, t)

∂t
= 2

[

∫

f(α′, t)ρw(α′, t)dα′
]

ρw(α, t) − 2f(α, t)ρw(α, t)

Note that it follows from (4.1) that

∫

∂ρw(α, t)

∂t
dα =

∫

〈v(t)|α〉ρw(α, t)dα = 2

∫

(E(f(α, t))− f(α, t))ρor(α, t)dα = 0,

as to be expected.
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4.4. Evolution of lengths in 1d. Now let us look at ρlen(l, t) =
∑

i δ(l − li).
Theorem 4.4. Assuming that diffusion in lengths is a Markov process, its evo-

lution satisfies

∂ρlen(l, t|α)

∂t
= −〈v|α〉(t)

∂ρlen(l, t|α)

∂l
(4.4)

Proof.
Denoting for the moment ρ(l, t) = ρlen(l, t), we can write

ρ(l, t + ∆t|α) + o(∆t)2 =
∫

ρ(l′, t|α)P(l − l′, ∆t|l′, α)dl′ =

∫

ρ(l − ∆l, t|α)P(∆l, ∆t|l − ∆l, α)d(∆l) =

∫

[

ρ(l, t) −
∂ρ

∂l
∆l +

1

2

∂2ρ

∂l2
(∆l)2

]

×
[

P(∆l, ∆t|l) −
∂P

∂l
∆l +

1

2

∂2
P

∂l2
(∆l)2

]

d(∆l) =

ρ(l, t|α) −
∂ρ(l, t|α)

∂l
〈∆l|α〉 +

1

2

∂2ρ(l, t|α)

∂l2
〈∆l2|α〉−

ρ ·
∂〈∆l|α〉

∂l
+

ρ

2

∂2〈∆l2|α〉

∂l2
+

∂ρ

∂l

∂〈∆l2|α〉

∂l
=

ρ(l, t|α) −
∂

∂l

[

ρ(l, t|α)〈∆l|α〉
]

+
1

2

∂2

∂l2

[

ρ(l, t|α)〈∆l2|α〉
]

In other words,

∂ρ(l, t|α)

∂t
= −

∂c1ρ(l, t; α)

∂l
+

1

2

∂2c2ρ(l, t|α)

∂l2
, where c1 =

〈∆l|α〉

∆t
, c2 =

〈∆l2|α〉

∆t

Notice that since ∆l = 〈v〉∆t, 〈∆l〉 = 〈v〉∆t = 0 and so 〈v〉 = 0. It follows that

c1 = 〈∆l|α〉
∆t

= 〈v|α〉 and c2 = 〈∆l2|α〉
∆t

= 〈v|α〉2∆t → 0 as ∆t → ∞, so that

∂ρlen(l, t|α)

∂t
= −〈v(t)|α〉

∂ρlen(l, t|α)

∂l

This equation integrated in l yields (4.3), as to be expected.
According to this model, if we assume independence of neighboring orientations,

we get a drift term related to the mean velocity of the grain boundaries conditioned
on their orientations and the diffusion part becomes negligible.

4.5. Numerical results. This regime is a special case of the Fokker-Planck
kinetic equations, which agrees well with the conservation laws and has very good
agreement with numerical results at the beginning of the simulation, as shown in
Figures 4.1, 4.2.

However, it tends to deviate from the exact solution as time grows, as shown
in Figure 4.3. This points out to possible growth of dependence between the neigh-
boring α populations, that have a tendency to cluster according to their minimum
misorientations. These observations led to the development of a statistical mechanics
approach that is described in the next Chapter.
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Fig. 4.1. Illustration of the agreement of distributions at the initial stages of the evolution.
Distribution of orientations produced by the PDE compared to the simulation for f = (x− 0.5)2(x−

1.5)2.

Fig. 4.2. Illustration of the agreement of distributions at the initial stages of the evolution.
Distribution of orientations (top figures) and lengths (bottom figures) produced by the PDE (left)
compared to the simulation (right) for f = cos(2πx) + 1.
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Fig. 4.3. Illustration of departure from initial agreement in later stages of the evolution. Distri-
bution of orientations (top figures) and lengths (bottom figures) produced by the PDE (left) compared
to the simulation (right) for f = cos(2πx) + 1.

5. Boltzmann-type kinetic equation.

5.1. Reduced space model. Here we will focus our attention on the view
adopted from the theory of gas dynamics [13],[12]. More precisely, we can regard our
system of grain boundaries (intervals) as a collection of interacting particles moving
with velocities vi. Each particle has parameters (li, αi), where l̇i = vi. Notice that in
contrast with the statistical mechanics approach, we do not intend to keep positions
of the grains as part of the equation, since otherwise we run into the risk of reducing
the benefits the present approach may have for all practical grain growth applications.
This fact, however, has an added cost of making further modeling of the system more
complicated. Nevertheless, we might still be able to write down the exact rules of
collision and corresponding kinetic equations.

Indeed, observe that in these variables each collision event is completely deter-
mined by the pair of values (v, α) for each of the interacting grain boundaries. For
example, during the collapse of a grain boundary (v2, α2), its neighbor (v1, α1) ac-
quires the new velocity according to the rule

v∗ = v1 + v2 + f(α2) − f(α1), (5.1)

while the orientation parameter α1 remains unchanged. This way the intrinsic cor-
relations between the neighbors get preserved through the velocity expression v =
f(αi+1) + f(αi−1)− 2f(α), as is necessary for producing correct dynamics due to the
reasons mentioned above. It can be worthwhile to note that this kind of collision
dynamics resembles the case of a ”sticky” collision of completely inelastic particles
observed, for example, in granular gases, as described in [14].

Next, we can write the continuity equation for the density function ρ(l, v, α, t),
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arriving at the following form of the equation of motion:

∂ρ(l, v, α, t)

∂t
+ v

∂ρ(l, v, α, t)

∂l
=

[∂ρ(l, v, α, t)

∂t

]

c
(5.2)

Here the term on the right hand side accounts for the interchange in the popula-
tions (the rate of change in the density) due to collisions.

[∂ρ(l, v, α, t)

∂t

]

c
= {gain} − {loss} (5.3)

Similarly to the derivation of the inelastic Boltzmann equation, this term can be
written as an integral over all possible collisions:

∂ρ(l, v, α, t)

∂t
+ v

∂ρ(l, v, α, t)

∂l
=

1

N2(t)

∫ ∫ ∫

v0ρ(0, v0, α0, t)ρ(l, v′, α, t)
[

δ(v − v∗) − δ(v − v′)
]

dv′ dv0 dα0

(5.4)

with v∗ = v′+v0+f(α0)−f(α) being the new velocity for the collided grain boundary
and N(t) denoting the total number of boundaries at time t.

Here v0ρ(0, v0, α0, t)ρ(l, v′, α, t)/N2(t) is the collision rate under the assumption
of reasonable independence of (l, v, α) populations. The difference of Dirac delta
functions denotes the gain and loss of grain boundaries within each population during
a collision.

Notice that by integrating this equation over all possible velocities, we get back
our earlier advection equation (4.4), so this approach represents a natural extension
of the mean velocity theory based on orientations presented earlier.

The simulation of this equation showed that this approach gives good agreement
with the actual simulation for some period of time, after which it becomes impossible
to find the right pair of colliding grain boundaries. In other words, the equation
v0 + 2f(α0) = f(α′) + f(α′′) for the dying grain boundary (α0, v0) with interacting
neighbors (α′, v′), (α′′, v′′) becomes inconsistent by violating v0 + 2f(α0) ≥ 0. The
reason behind it is that by picking random neighbors uniformly we leave too much
freedom in the motion of the particles, which eventually takes us to a wrong grain
configuration. Another way to express this is that the molecular chaos assumption
does not seem to hold in this state space.

To suppress the freedom of motion, we should get rid of the chaotic behavior
in the first level of neighboring grains. This can be done either by imposing some
strict conditions on the choice of grain boundaries participating in each collision or by
further extending the state space of the model to include a first level of dependencies.
As part of the first approach, we considered the following set of restricting conditions:

1. v′ < 0
2. f(α′) < f(α0)
3. v0 + f(α0) − f(α′) ≤ 0
4. v′ + v0 + f(α0) + f(α′) ≥ 0

which extended the lifetime of the system but not significantly. It remains an open
question whether there might exist another set of conditions that can be imposed on
the system to correct this flaw. Since the observations of model behavior in the initial
period of time showed very good agreement with the actual simulation, there is a
reason to believe that the model would work well if it is allowed to run for a longer
period of time.
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The major obstacle in using this approach lies in the increased computational
complexity associated with evaluating triple integrals in (5.4). Indeed, we have found
that a simple Matlab routine has to be replaced by a faster C-version in order to
produce 10000 grain collision dynamics in reasonable time frame. There is a reason
to believe, however, that this complexity can go down, not up, in the case of higher
dimensional problems, since additional freedom of movement will contribute positively
to the validity of the model and may lead to a simpler estimate for the collision rates.

5.2. Extended state space model. As an alternative, we can split the grain
boundary velocity into 2 parts vl and vr, for the left and the right endpoint separately:

ρ(l, vl, vr, α, t)

Let xl and xr are the endpoints and the αl and αr are the left and right neighbors of
the grain boundary with orientation α and length l. In terms of variables (l, vl, vr, α, t),
we can always find the left and right neighbors by solving the equations

f(αl) = f(α) − vl, f(αr) = f(α) + vr

where dxl/dt = vl = f(α) − f(αl) and dxr/dt = vr = f(αr) − f(α). Then the jumps
in the velocities for the neighbors of the dying grain boundary α can be written as:

vr(αl) = vl(αr) = vl(dead) + vr(dead)

In simple words, it means that the velocities of two colliding boundaries add up
during the collision. By following these simple collision rules, we can write another
Boltzmann-type collision equation for the density function:

∂ρ(l, vl, vr, α, t)

∂t
+ (vr − vl)

∂ρ(l, vl, vr, α, t)

∂l
=

[∂ρ(l, vl, vr, α, t)

∂t

]

c
(5.5)

where

[∂ρ(l, vl, vr, α, t)

∂t

]

c
=

∫

(vl − 2v′l)ρ(0, v′l, vl − v′l, αl, t)dv′l

+
∫

(2v′r − vr)ρ(0, vr − v′r, v
′
r, αr, t)dv′r

−
∫

(vl − v′l)ρ(0, v′l, vl, αl, t)dv′l
−

∫

(v′r − vr)ρ(0, vr, v
′
r, αr, t)dv′r

(5.6)

This equation can be written in an equivalent form in terms of (l, α, αl, αr) instead
of velocities.

We have inflated the dimension of the problem by introducing neighboring grain
information into the distribution function. This may lead to a significant increase of
complexity if the model is extended to higher dimensions. Note, however, that the
nearest neighbor correlations observed in this one-dimensional model are expected to
become weaker as the topology of the problem changes, since the pool of interacting
triple junctions will get a new random supply of orientations not present when we
restrict ourselves to a line.

The results of the extended model as expected agree perfectly with the actual
simulation and remain valid until the very last stage of the simulation, as outlined in
Figure 5.1. We have found numerical Monte-Carlo integration approach provides a
very nice performance to this model.
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Fig. 5.1. Comparing orientations (left), lengths (center) and velocities (right) distributions
for the simulation(red) and the MC-version of the birth-death density evolution equation for the 3
minima case.

Compared to the reduced model, equation (5.6) gives a much better agreement
with the actual data, but it does require a lot more parameters. While this is not cru-
cial in the 1-dimensional example considered here, it will surely lead to complications
when we take into account all neighboring grains in the real two- or three-dimensional
data. According to the remarks made earlier, however, the reduced space collision
dynamics should provide a more reasonable approximation once the unrealistic re-
strictions posed by the problem topology are removed.

6. Discussion. We have presented two frameworks for modeling critical events
in microstructure evolution and analyzed their capabilities by applying them to a sim-
plified model specifically designed to target the evolution of triple junctions during
grain growth disregarding mean curvature effects present in the real systems. One
model is based on the birth-death description motivated by the idea of averaging over
segments with common orientation. This approach fits well within several traditional
and more recent theories for anisotropy and has a good potential for explaining the
relation between grain boundary character distribution and underlying interface en-
ergy. Another approach is motivated by the theory of sticky gas dynamics. It has a
capability to model critical events more thoroughly through the set of collision rules
and hence goes beyond the averaging ideas used in the birth-death model.

Both approaches proved to be effective in the early stages of the simulation. We
have discovered, however, that a significant correlation develops in this 1-dimensional
problem between neighboring orientations after about half of the segments have dis-
appeared, which hinders the performance of both approaches. One possible remedy
to this problem proposed in this work is the extended space Boltzmann equation that
takes into account all local reconfigurations in the grain boundary network and suc-
cessfully reproduces the distributions during full system lifecycle. This approach leads
to an expansion of the problem state space for higher dimensional problems. However,
there is a reason to believe that correlations will be much weaker in higher dimen-
sions after removal of the topological constraints associated with the one-dimensional
model, in which case state expansion might be avoided. The magnitude of the effect
correlations have on the grain boundary network in higher dimensions is currently
under inverstigation. Its implications on the theories presented above will be the
subject of future publications.
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