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Abstract

The Internet has emerged as perhaps the most important network in modern computing,

but rather miraculously, it was created through the individual actions of a multitude of agents

rather than by a central planning authority. This motivates the game theoretic study of network

formation, and our paper considers one of the most-well studied models, originally proposed by

Fabrikant et al. In it, each of n agents corresponds to a vertex, which can create edges to other

vertices at a cost of α each, for some parameter α. Every edge can be freely used by every vertex,

regardless of who paid the creation cost. To reflect the desire to be close to other vertices, each

agent’s cost function is further augmented by the sum total of all (graph theoretic) distances to

all other vertices.

Previous research proved that for many regimes of the (α, n) parameter space, the total

social cost (sum of all agents’ costs) of every Nash equilibrium is bounded by at most a constant

multiple of the optimal social cost. In algorithmic game theoretic nomenclature, this approxi-

mation ratio is called the price of anarchy. In our paper, we significantly sharpen some of those

results, proving that for all constant non-integral α > 2, the price of anarchy is in fact 1 + o(1),

i.e., not only is it bounded by a constant, but it tends to 1 as n → ∞. For constant integral

α ≥ 2, we show that the price of anarchy is bounded away from 1. We provide quantitative

estimates on the rates of convergence for both results.

1 Introduction

Networks are of fundamental importance in modern computing, and substantial research has been

invested in network design and optimization. However, one of the most significant networks, the

Internet, was not created “top-down” by a central planning authority. Instead, it was constructed

through the cumulative actions of countless agents, many of whom built connections to optimize

their individual objectives. To understand the dynamics of the resulting system, and to answer the
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important question of how much inefficiency is introduced through the selfish actions of the agents,

it is therefore natural to study it through the lens of game theory.

In this paper, we focus on a well-studied game-theoretic model of network creation, which was

formulated by Fabrikant et al. in [10]. There are n agents, each corresponding to a vertex. They

form a network by laying down connections (edges) between pairs of vertices. For this, each agent

v has an individual strategy, which consists of a subset Sv of the rest of the vertices that it will

connect to. The resulting network is the disjoint union of all (undirected) edges between vertices

v and vertices in their Sv. Note that in this formulation, an edge may appear twice, if v lays a

connection to w and w lays a connection to v. Let α be an arbitrary parameter, which represents

the cost of making a connection. In order to incorporate each agent’s desire to be near other

vertices, the total cost to each agent is defined to be:

cost(v) = α|Sv|+
∑
w

dist(v, w) ,

where the sum is over all vertices in the graph, and dist(v, w) is the number of edges in the shortest

path between v and w in the graph, or infinity if v and w are disconnected. The social cost is

defined as the total of the individual costs incurred by each agent. This cost function summarizes

the fact that v must pay the construction cost for the connections that it initiates, but v also prefers

to be graph-theoretically close to the other nodes in the network. This model also encapsulates

the fact that, just as in the Internet, once a connection is made, it can be shared by all agents

regardless of who paid the construction cost.

The application of approaches from algorithmic game theory to the study of networks is not

new. The works [5, 6, 8, 13, 14, 15] all consider network design issues such as load balancing,

routing, etc. Numerous papers, including [1, 2, 3, 4, 7, 9] and the surveys [11, 16], have considered

network formation itself, by formulating and studying network creation games. From a game-

theoretic perspective, a (pure) Nash equilibrium is a tuple of deterministic strategies Sv (one per

agent) under which no individual agent can strictly reduce its cost by unilaterally changing its

strategy assuming all other agents maintain their strategies. If every unilateral deviation strictly

increases the deviating agent’s cost, then the Nash equilibrium is strict.

To quantify the cumulative losses incurred by the lack of coordination, the key ratio is called

the price of anarchy, a term coined by Koutsoupias and Papadimitriou [12]. It is defined as the

maximum social cost incurred by any Nash equilibrium, divided by the minimum possible social cost

incurred by any tuple of strategies. Note that the minimizer, also known as the social optimum, is

not necessarily a Nash equilibrium itself. The central questions in this area are thus to understand

the price of anarchy, and to characterize the Nash equilibria.

1.1 Previous work

To streamline our discussion, we will represent a tuple of strategies with a directed graph, whose

underlying undirected graph is the resulting network, and where each edge vw is oriented from v

to w if it was constructed by v’s strategy (w ∈ Sv). This is well-defined because it is clear that

the social optimum and all Nash equilibria will avoid multiple edges, and so each edge is either not

present at all, or present with a single orientation.
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The problem is trivial for α < 1, because all Nash equilibria produce complete graphs, as does

the social optimum, and therefore the price of anarchy is 1 in this range. For α ≥ 1, a new Nash

equilibrium arises: the star with all edges oriented away from the central vertex. Indeed, the central

vertex has no incentive to disconnect any of the edges which it constructed, as its individual cost

function would rise to infinity, and no other vertex has incentive to add more connections, because

a new connection would cost an additional α ≥ 1, and reduce at most one of the pairwise distances

by 1. Yet, as observed in the original paper of Fabrikant et al. [10], when α < 2, the social optimum

is a clique, and they calculate the price of anarchy to be 4
2+α + o(1), where the error term tends to

0 as n→∞. This ranges from 4
3 to 1 as α varies in that interval.

For α ≥ 2, the social optimum is the star. Various bounds on the price of anarchy were achieved,

with particular interest in constant bounds, which were derived in many ranges of the parameter

space. From the point of view of approximation algorithms, these show that in those ranges of α,

the Nash equilibria that arise from the framework of selfish agents still are able to approximate the

optimal social cost to within a constant factor. The current best bounds are summarized in Table

1.

Regime Upper bound on price of anarchy

General α 2O(
√
logn)

2 ≤ α < 3
√
n/2 4

3
√
n/2 ≤ α <

√
n/2 6

α = O(n1−ε) O(1)

α ≥ 12ndlog2 ne O(1)

Table 1: Previous upper bounds on the price of anarchy. The last bound above is due to Albers et al. [2],

and the other bounds are due to Demaine et al. [9].

1.2 Our contribution

Much work had been done to achieve constant upper bounds on the price of anarchy in various

regimes of α, because those imply the satisfying conclusion that selfish agents fare at most a constant

factor worse than optimally coordinated agents. Perhaps surprisingly (or perhaps reassuringly), it

turns out that the price of anarchy is actually 1 + o(1) for most constant values of α. In other

words, the lack of coordination has negligible effect on the social cost as n grows.

Theorem 1.1. For non-integral α > 2, and n > α3, the price of anarchy is at most

1 +
150α6

(α− bαc)2

√
log n

n
= 1 + o(1) .

On the other hand, for each integer α ≥ 2, the price of anarchy is at least

3

2
− 3

4α
+

1

α2
+ o(1) ,

and it is achieved by the following construction. Start with an arbitrary orientation of the complete

graph on k vertices. For each vertex v of the complete graph, add α − 1 new vertices, each with a

single edge oriented from v.
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2 Proof for non-integral α

Assume that we are given a Nash equilibrium. In this section, we prove that its total social cost is

bounded by 1 + o(1) times the social optimum, as stated in Theorem 1.1. Throughout this proof,

we impose a structure on the graph as follows: select a vertex v, and partition the remainder of the

graph into sets based on their distance from v. Let N1 denote the set of vertices at distance 1 from

v, let N2 denote the set of vertices at distance 2 from v, etc., as diagrammed in Figure 1. Since the

graph in every Nash equilibrium is obviously connected, every vertex falls into one of these sets.

v

N1

N2

N3

Figure 1: Partitioning the graph into sets.

Consider any vertex vi ∈ Ni where i ≥ 3. Since the graph is connected, we can always find a

path vivi−1vi−2 . . . v2v1v, where vj ∈ Nj for all 1 ≤ j ≤ i. In this case, we will call vi a child of v2.

(Note that vi may be a child of more than one vertex, but is always a child of at least one vertex.)

This is diagrammed in Figure 2.

v

N1

N2

N3 N4

a

b

c

d

e

f

Figure 2: Here, d and e are children of b; c is a child of a, but not a child of b; and f is a child of both a

and b.
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Lemma 2.1. No matter which vertex is used as v to construct the vertex partition, every vertex

in N2 has at most bα− 1c children.

Proof. Suppose w ∈ N2 has more than α− 1 children. Consider what happens if v buys an edge to

w. Although v pays α for the edge, it gets one step closer to w and all of its children, and so the

distance component of v’s cost function reduces by more than 1+(α−1) = α. Therefore, buying the

edge is a net positive gain for v. But we assumed the graph was a Nash equilibrium—contradiction.

Therefore, w has at most α − 1 children, and since its number of children is an integer, we may

round the bound down as in the statement of the lemma.

Lemma 2.2. Regardless of the choice of v, the resulting parts Ni satisfy:

|N1|+ |N2|+ 1 ≥ n

α
.

Proof. Since every vertex in N3 ∪ N4 ∪ . . . is a child of at least one vertex of N2, but Lemma 2.1

bounds the number of children per N2-vertex by α− 1, we must have

(α− 1)|N2| ≥ |N3 ∪N4 ∪ . . . | = (n− 1− |N1| − |N2|)
α|N2|+ |N1|+ 1 ≥ n ,

which implies the desired result.

Lemma 2.3. If x has degree at least α, then every vertex is at most distance 3 from it.

Proof. If some vertex w is distance at least 4 from x, then w can buy an edge to x. Vertex w

will pay α for the edge, and get 3 steps closer to x, as well as at least 1 step closer to all of x’s

immediate neighbors, for a net gain. Hence this cannot appear in a Nash equilibrium.

Corollary 2.1. If n is sufficiently large (n > α3), then the graph has diameter at most 4.

Proof. Consider an arbitrary pair of vertices v, w. Lemma 2.2 implies that for n sufficiently large

(n > α3 suffices), either v has degree at least α, or one of v’s neighbors has degree at least α. In

either case, we can travel from v to a vertex with degree at least α in at most one step, and then

by Lemma 2.3, travel to w in at most 3 more steps. Therefore, v and w are at distance at most

4.

Remark. From now on, we will assume n > α3, and so for any initial choice of v, the resulting

partition will only have N1, N2, N3, and N4.

Lemma 2.4. Consider the partition constructed from an arbitrary initial vertex v. Select any

w ∈ N2, and let d be the number of edges w pays for which connect to other vertices in N2. Then

d ≤ |N1| · α
α−bαc .

Proof. Consider the following strategy for w: disconnect those d edges, and instead connect to

every vertex in N1. We will carefully tally up the potential gain for this amendment.
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• Paying for edges: w saves at least (d− |N1|)α in terms of paying for edges. (The “at

least” is because w might already be connected to some vertices in N1.)

• Connectedness to v and N1: w obviously can’t get farther away from v or any vertices in N1.

• Connectedness within N2: w gets farther away from all d vertices it disconnected from, but

remains at distance 2 from all of N2, since every vertex in N2 is connected to some vertex in

N1. This results in a maximum increased cost of d in terms of distances to other vertices

within N2.

• Connectedness to N3 and N4: When disconnecting from a vertex x ∈ N2, w might get farther

away from all of x’s children in N3 and N4. However, remember that w is still distance 2

from all of N2. Hence, w is still distance 3 from all of N3 and distance 4 from all of N4.

Therefore, w can only get 1 step farther from x’s children, and doesn’t get any farther from

vertices in N3 and N4 that aren’t x’s children. By Lemma 2.1, every N2-vertex has at most

bα − 1c children. Therefore, in disconnecting from d vertices, w gets 1 step farther from at

most dbα− 1c vertices in N3 and N4, for a cost increase of at most dbα− 1c.

Adding, w’s net cost savings total to at least (d − |N1|)α − d − dbα − 1c, which must be ≤ 0

since we are at a Nash equilibrium. Rearranging, d ≤ |N1| · α
α−bαc , as desired.

Lemma 2.5. If |N1| is o(n), then so is |N3 ∪N4|. Quantitatively, |N3 ∪N4| < |N1| · 5α3

α−bαc .

Proof. Let P be the number of pairs of vertices (x, y), such that x ∈ N3 ∪ N4 and y is at most

distance 2 from x. We will bound this number in two ways. First, Lemma 2.2 tells us that for any

vertex in the graph, the number of vertices at most distance 2 from it is at least n
α . Therefore,

P ≥ |N3 ∪N4| · nα .

For the second way, we will find an upper bound for the number of ways to start at a vertex

x ∈ N3 ∪N4, and then travel along at most two edges in some way. This is an overcount for P , so

it will give an upper bound. To count the number of these paths, we do casework on the various

ways to start at a vertex in N3 ∪N4 and then travel along at most two edges.

Case 1: The path stays inside N3 ∪ N4. Any vertex in N3 ∪ N4 can be connected to at most

α − 1 other vertices in N3 ∪ N4 (otherwise v would gain from connecting to it directly), so the

number of paths for us to count for each starting vertex is at most 1 + (α − 1) + (α − 1)2 ≤ α2.

Therefore, the total number of paths of this type is at most |N3 ∪N4|α2.

Case 2: The path travels from N3 ∪N4 to N3 to N2, or is a length 1 path traveling from N3 to

N2. We count these backwards, starting from N2. The number of edges from N2 to N3 is at most

α|N2| by Lemma 2.1, and again, every vertex in N3 is connected to at most α vertices in |N3∪N4|,
if including itself. Therefore, the number of paths here is at most α2|N2|.

Case 3: The path travels from N3 to N2 to N3. We can count these by looking at the vertex

in N2 first, and then picking 2 of its children in N3. Thus, the number of such paths is at most

|N2|α2.
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Case 4: The path travels from N3 to N2 to N1. Similarly to Case 2, the number of such paths

is at most α|N2||N1|.

Case 5: The path travels from N3 to N2 to N2. By Lemma 2.4, the number of edges inside

N2 is at most |N2||N1| α
α−bαc . Each such path consists of one of these edges, together with an edge

to N3 from one of its two endpoints. Therefore, the number of paths for us to count is at most

|N2||N1| 2α2

α−bαc .

Total: summing over all cases, we have:

P ≤ |N3 ∪N4|α2 + 2α2|N2|+ |N1||N2|α+ |N1||N2|
2α2

α− bαc

< 2α2n+ |N1|n
(
α+

2α2

α− bαc

)
< |N1|n

(
5α2

α− bαc

)
.

But P ≥ |N3 ∪N4|nα from above, so:

|N3 ∪N4|
n

α
< |N1|n

(
5α2

α− bαc

)
|N3 ∪N4| < |N1| ·

5α3

α− bαc
.

Lemma 2.6. If every vertex has degree >
√
n log n, then the graph is asymptotically socially opti-

mal: the total social cost is at most 2n2 + αn3/2
√

log n.

Proof. Suppose we have a Nash equilibrium where all vertices have degree greater than
√
n log n.

We give a strategy for an arbitrary vertex to achieve an individual cost of at most α
√
n log n+2n, by

changing only its own behavior. Since this is a Nash equilibrium, we will then be able to conclude

that every vertex must have had individual cost at most α
√
n log n+ 2n, proving this claim.

Specifically, we show that for any vertex w, the strategy “undo all edges you’re currently paying

for, and connect to
√
n log n vertices at random” has a positive probability of bringing it within

distance ≤ 2 from every other vertex in the graph. Indeed, if w does this, then for any other vertex

x,

P [x is now distance > 2 from w]

≤ P [w didn’t choose any of x’s neighbors]

≤
(

1−
√
n log n

n

)√n logn

≤ e− logn =
1

n
.

Since there are only n−1 other vertices x 6= w to consider, a union bound shows that the probability

of failure is at most (n − 1) 1
n < 1, and therefore there is a way for w to attain an individual cost

of at most α
√
n log n+ 2n, as desired.
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Lemma 2.7. Even if there is a vertex of degree at most
√
n log n, the graph is still asymptotically

socially optimal: the total social cost is at most 2n2 + n3/2
√

log n · 290α6

(α−bαc)2 .

Proof. Let v be a vertex of degree at most
√
n log n, and construct the vertex partitionN1, N2, N3, N4.

We already know |N1| is at most
√
n log n = o(n), so by Lemma 2.5, |N3 ∪N4| is at most

√
n log n ·

5α3

α−bαc = o(n). By Lemma 2.4, the total number of edges inside N2 is at most |N2||N1| α
α−bαc ≤

n3/2
√

log n · α
α−bαc = o(n2). Also, the total number of edges not completely inside N2 is at most

n · (1 + |N1|+ |N3 ∪N4|) ≤ n3/2
√

log n · 6α3

α−bαc = o(n2). Therefore, the total number of edges is the

whole graph is at most n3/2
√

log n · 7α3

α−bαc = o(n2).

Next, we calculate a bound on the total sum of distances in the graph. Using Lemma 2.5 on

every vertex in the graph, and the fact that all distances are at most 4 (Corollary 2.1), we get:

[total sum of distances in the graph]

≤ 2n2 + 4[# of distances in the graph that are 3 or 4]

= 2n2 + 4
∑
w

[# of vertices at distance 3 or 4 from w]

< 2n2 + 4
∑
w

deg(w) · 5α3

α− bαc
.

The degree sum is precisely twice the total number of edges in the graph, a quantity which we just

bounded above. Putting everything together, the total sum of distances is at most:

2n2 + 8n3/2
√

log n · 7α3

α− bαc
· 5α3

α− bαc
= 2n2 + n3/2

√
log n · 280α6

(α− bαc)2
.

Adding α times the number of edges to compute the total social cost, we obtain the desired

bound.

Lemmas 2.6 and 2.7 cover complementary cases, so we now conclude that the total social cost of

every Nash equilibrium is at most the bound obtained in Lemma 2.7. As was observed by previous

authors [10], the social optimum for α ≥ 2 is the star, achieving a social cost of at least 2n(n− 1).

Dividing, we find that the price of anarchy is at most

1 +
150α6

(α− bαc)2

√
log n

n
= 1 + o(1) ,

proving the first part of Theorem 1.1.

3 Integral α

There is one catch in our bound above. Namely, when α is only slightly greater than an integer

(e.g. 4.0001), the terms of the form ?
α−bαc all blow up, giving the final o(n2) terms for our bound a

large constant factor. Even worse, when α is an exact integer, the proof fails completely. Perhaps

surprisingly, this is not an artifact of the proof. In this section, we construct a counterexample
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when α is an integer. Let v1, v2, . . . , vk be a large clique with edges oriented arbitrarily. In addition,

each vertex vi in the clique also pays for edges to α − 1 separate leaves li:1, li:2, . . . , li:α−1. This

graph also appears in [2], but we provide a full analysis here for completeness.

Lemma 3.1. In this graph, no single vertex has a better strategy than the one it’s currently using.

Proof. First, consider any leaf, say l1:1. This leaf is not currently paying for any edges, so its

only option is to pay for some set of edges. Notice that purely choosing some set of edges to pay

for, without being able to delete any edges, is an instance of convex optimization. Therefore, by

convexity, if any vertex in any graph can improve its station purely by adding some set of edges S,

then it can also do this by adding some single edge s ∈ S. By observation, the leaf can only break

even by adding one edge, so it can only break even overall.

Next, consider a members of the clique, say v1. This vertex cannot delete its connections to its

leaves, because that would disconnect the graph, making the distance component of its cost infinite.

If v1 remains neighbors with vi and also buys an edge to some leaf vi:j , then this is suboptimal:

the edge to vi:j costs α but only gets v closer to one vertex. If v1 deletes its edge to vi but buys

an edge to some leaf vi:j , this is unnecessary: v1 can move the edge from vi:j to vi, switching its

distances to those two vertices and not increasing the distance to any other vertex. Therefore, it is

unnecessary for v1 to consider strategies involving connecting to other vertices’ leaves.

Thus, similarly to the previous case, v1 only needs to consider strategies involving purely deleting

edges. Again, by convexity, this reduces to considering strategies involving deleting a single edge.

But again, v1 can only break even by deleting an edge, so it can only break even overall.

Therefore, the graph is indeed a weak Nash equilibrium. Let n be the number of vertices in the

graph. The size of the clique is k = n
α , and so the cost of all of the edges is

α

[(
k

2

)
+ (α− 1)k

]
= α

[
(1 + o(1))

n2

2α2
+
α− 1

α
n

]
= (1 + o(1))

n2

2α
.

Every clique vertex is distance 1 from the rest of the clique, as well as its leaves, and distance 2

from every other vertex; therefore, each clique vertex sees a distance sum of

(1 + o(1))n

(
2− 1

α

)
.

Since there are n
α clique vertices, these contribute a total of

(1 + o(1))n2
(

2

α
− 1

α2

)
.

Every leaf vertex is distance 2 from almost all of the clique, and distance 3 from almost all of the

leaves, and so it sees a distance sum of

(1 + o(1))n

(
3− 1

α

)
.
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Since there are n(1− 1
α) leaves, these contribute a total distance sum of

(1 + o(1))n2
(

3− 4

α
+

3

α2

)
.

Putting everything together, we find that this graph has a total social cost of

(1 + o(1))n2
(

3− 3

2α
+

2

α2

)
,

giving a price of anarchy at least 3
2 −

3
4α + 1

α2 + o(1), as claimed in the second part of Theorem 1.1.

4 Concluding remarks

It is interesting that the price of anarchy converges to 1 for non-integral α > 2, but is bounded

away from 1 for integer α ≥ 2. Our convergence rate is non-uniform in the sense that it slows down

substantially when α is slightly more than an integer. On the other hand, when α is slightly less

than an integer, the convergence rate is still relatively rapid. It would be nice to prove a uniform

convergence rate for all non-integral α.
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