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STOCHASTIC COALESCENCE IN LOGARITHMIC TIME

BY PO-SHEN LOH AND EYAL LUBETZKY

Carnegie Mellon University and Microsoft Research

The following distributed coalescence protocol was introduced by Dahlia
Malkhi in 2006 motivated by applications in social networking. Initially there
are n agents wishing to coalesce into one cluster via a decentralized stochas-
tic process, where each round is as follows: every cluster flips a fair coin to
dictate whether it is to issue or accept requests in this round. Issuing a re-
quest amounts to contacting a cluster randomly chosen proportionally to its
size. A cluster accepting requests is to select an incoming one uniformly (if
there are such) and merge with that cluster. Empirical results by Fernandess
and Malkhi suggested the protocol concludes in O(logn) rounds with high
probability, whereas numerical estimates by Oded Schramm, based on an in-
genious analytic approximation, suggested that the coalescence time should
be super-logarithmic.

Our contribution is a rigorous study of the stochastic coalescence pro-
cess with two consequences. First, we confirm that the above process in-
deed requires super-logarithmic time w.h.p., where the inefficient rounds are
due to oversized clusters that occasionally develop. Second, we remedy this
by showing that a simple modification produces an essentially optimal dis-
tributed protocol; if clusters favor their smallest incoming merge request then
the process does terminate in O(logn) rounds w.h.p., and simulations show
that the new protocol readily outperforms the original one. Our upper bound
hinges on a potential function involving the logarithm of the number of clus-
ters and the cluster-susceptibility, carefully chosen to form a supermartingale.
The analysis of the lower bound builds upon the novel approach of Schramm
which may find additional applications: rather than seeking a single parame-
ter that controls the system behavior, instead one approximates the system by
the Laplace transform of the entire cluster-size distribution.

1. Introduction. The following stochastic distributed coalescence protocol
was proposed by Malkhi in 2006, motivated by applications in social network-
ing and the reliable formation of peer-to-peer networks (see [11] for more on these
applications). The objective is to coalesce n participating agents into a single hi-
erarchal cluster reliably and efficiently. To do so without relying on a centralized
authority, the protocol first identifies each agent as a cluster (a singleton), and then
proceeds in rounds as follows:

(1) Each cluster flips a fair coin to determine whether it will be issuing a merge-
request or accepting requests in the upcoming round.
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(2) Issuing a request amounts to selecting another cluster randomly proportion-
ally to its size.

(3) Accepting requests amounts to choosing an incoming request (if there are
any) uniformly at random and proceeding to merge with that cluster.

In practice, each cluster is in fact a layered tree whose root is entrusted with run-
ning the protocol, for example, each root decides whether to issue or accept re-
quests in a given round, etc. When attempting to merge with another cluster, the
root of cluster Ci simply chooses a vertex v uniformly out of [n], which then prop-
agates the request to its root. This therefore corresponds to choosing the cluster
Cj proportionally to |Cj |. This part of the protocol is well-justified by the fact
that agents within a cluster typically have no information on the structure of other
clusters in the system.

A second feature of the protocol is the symmetry between the roles of issuing
or accepting requests played by the clusters. Clearly, every protocol enjoying this
feature would have (roughly) at most half of its clusters become acceptors in any
given round, and as such could terminate within O(logn) rounds. Furthermore, on
an intuitive level, as long as all clusters are of roughly the same size (as is the case
initially), there are few “collisions” (multiple clusters issuing a request to the same
cluster) each round and hence, the effect of a round is similar to that of merging
clusters according to a random perfect matching. As such, one might expect that
the protocol should conclude with a roughly balanced binary tree in logarithmic
time.

Indeed, empirical evidence by Fernandess and Malkhi [10] showed that this
protocol seems highly efficient, typically taking a logarithmic number of rounds
to coalesce. However, rigorous performance guarantees for the protocol were not
available.

While there are numerous examples of stochastic processes that have been suc-
cessfully analyzed by means of identifying a single tractable parameter that con-
trols their behavior, here it appears that the entire distribution of the cluster-sizes
plays an essential role in the behavior of the system. Demonstrating this is the fol-
lowing example: suppose that the cluster C1 has size n − o(

√
n) while all others

are singletons. In this case it is easy to see that with high probability all of the
merge-requests will be issued to C1, who will accept at most one of them (we say
an event holds with high probability, or w.h.p. for brevity, if its probability tends
to 1 as n → ∞). Therefore, starting from this configuration, coalescence will take
at least n1/2−o(1) rounds w.h.p., a polynomial slowdown. Of course, this scenario
is extremely unlikely to arise when starting from n individual agents, yet possibly
other mildly unbalanced configurations are likely to occur and slow the process
down.

In 2007, Schramm proposed a novel approach to the problem, approximately
reducing it to an analytic problem of determining the asymptotics of a recursively
defined family of real functions. Via this approximation framework Schramm then
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gave numerical estimates suggesting that the running time of the stochastic coales-
cence protocol is w.h.p. super-logarithmic. Unfortunately, the analytical problem
itself seemed highly nontrivial and overall no bounds for the process were known.

1.1. New results. In this work we study the stochastic coalescence process
with two main consequences. First, we provide a rigorous lower bound confirming
that this process w.h.p. requires a super-logarithmic number of rounds to termi-
nate. Second, we identify the vulnerability in the protocol, namely the choice of
which merge-request a cluster should approve. While the original choice seems
promising in order to maintain the balance between clusters, it turns out that typ-
ical deviations in cluster-sizes are likely to be amplified by this rule and lead to
irreparably unbalanced configurations. On the other hand, we show that a simple
modification of this rule to favor the smallest incoming request is already enough
to guarantee coalescence in O(logn) rounds w.h.p. [Here and in what follows we
let f � g denote that f = O(g) while f � g is short for f � g � f .]

THEOREM 1.1. The uniform coalescence process U coalesces in τc(U ) �
logn · log logn

log log logn
rounds w.h.p. Consider a modified size-biased process S where

every accepting cluster Ci has the following rule:

• Ignore requests from clusters of size larger than |Ci |.
• Among other requests (if any), select one issued by a cluster Cj of smallest size.

Then the coalescence time of the size-biased process satisfies τc(S) � logn w.h.p.

Observe that the new protocol is easy to implement efficiently in practice as
each root can keep track of the size of its cluster and can thus include it as part of
the merge-request.

1.2. Empirical results. Our simulations show that the running time of the size-
biased process is approximately 5 log2 n. Moreover, they further demonstrate that
the new size-biased process empirically performs substantially better than the uni-
form process even for fairly small values of n, that is, the improvement appears not
only asymptotically in the limit but already for ordinary input sizes. These results
are summarized in Figure 1, where the plot on the left clearly shows how the uni-
form process diverges from the linear (in logarithmic scale) trend corresponding
to the runtime of the size-biased process. The right-most plot identifies the crux
of the matter; the uniform process rapidly produces a highly skewed cluster-size
distribution, which slows it down considerably.

1.3. Related work. There is extensive literature on stochastic coalescence pro-
cesses whose various flavors fit the following scheme: the clusters act via a
continuous-time process where the coalescence rate of two clusters with given
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FIG. 1. The left plot compares the running times for the two processes. Statistics are derived from
100 independent runs of each process, for each n ∈ {1024,2048, . . . ,220}. The right plot tracks the
ratio between the maximum and average cluster-sizes, through a single run of each process, for
n = 106. There, the uniform process took 128 rounds, while the size-biased process finished in 96.

masses x, y (which can be either discrete or continuous) is dictated up to re-scaling
by a rate kernel K . A notable example of this is Kingman’s coalescent [18], which
corresponds to the kernel K(x,y) = 1 and has been intensively studied in mathe-
matical population genetics (see, e.g., [8] for more on Kingman’s coalescent and
its applications in genetics). Other rate kernels that have been thoroughly studied
include the additive coalescent K(x,y) = x + y which corresponds to Aldous’s
continuum random tree [1], and the multiplicative coalescent K(x,y) = xy that
corresponds to Erdős–Rényi random graphs [9] (see the books [4, 17]). For further
information on these as well as other coalescence processes, whose applications
range from physics to chemistry to biology, we refer the reader to the excellent
survey of Aldous [2].

A major difference between the classical stochastic coalescence processes men-
tioned above and those studied in this work is the synchronous nature of the latter
ones. Instead of individual merges whose occurrences are governed by indepen-
dent exponentials, here the process is comprised of rounds where all clusters act
simultaneously and the outcome of a round (multiple disjoint merges) is a func-
tion of these combined actions. This framework introduces delicate dependencies
between the clusters, and rather than having the coalescence rate of two clusters
be given by the rate kernel K as a function of their masses, here it is a function
of the entire cluster distribution. For instance, suppose nearly all of the mass is in
one cluster Ci (which thus attracts almost all merge requests); its coalescence rate
with a given cluster Cj in the uniform coalescence process U clearly depends on
the total number of clusters at that given moment, and similarly in the size-biased
coalescence process S it depends on the sizes of all other clusters, viewed as com-
peting with Cj over this merge. In face of these mentioned dependencies, the task
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of analyzing the evolution of the clusters along the high-dimensional stochastic
processes U and S becomes highly nontrivial.

In terms of applications and related work in computer science, the processes
studied here have similar flavor to those which arose in the 1980s, most notably
the random mate algorithm introduced by Reif, and used by Gazit [15] for parallel
graph components and by Miller and Reif [20] for parallel tree contraction. How-
ever, as opposed to the setting of those algorithms, a key difference here is the fact
that as the process evolves through time, each cluster is oblivious to the distribu-
tion of its peers at any given round (including the total number of clusters for that
matter). Therefore, for instance, it is impossible for a cluster to sample from the
uniform distribution over the other clusters when issuing its merge request.

For another related line of works in computer science, recall that the coa-
lescence processes studied in this work organize n agents in a hierarchic tree,
where each merged cluster reports to its acceptor cluster. This is closely related
to the rich and intensively studied topic of randomized leader elections (see, e.g.,
[6, 12, 22, 23, 28]), where a computer network comprised of n processors attempts
to single out a leader (in charge of communication, etc.) by means of a distributed
randomized process generating the hierarchic tree. Finally, studying the dynamics
of randomly merging sets is also fundamental to understanding the average-case
performance of disjoint-set data structures (see, e.g., the works of Bollobás and
Simon [5], Knuth and Schönhage [19] and Yao [27]). These structures, which are
of fundamental importance in computer science, store collections of disjoint sets
and support two operations; (i) taking the union of a pair of sets and (ii) deter-
mining which set a particular element is in (see, e.g., [14] for a survey of these
data structures). The processes studied here precisely consider the evolution of a
collection of disjoint sets under random merge operations and it is plausible that
the tools used here could contribute to advances in that area.

1.4. Main techniques. As we mentioned above, the main obstacle in the co-
alescence processes studied here is that since requests go to other clusters with
probability proportional to their size, the largest clusters can create a bottleneck,
absorbing all requests yet each granting only one per round. An intuitive approach
for analyzing the size-biased process S would be to track a statistic that would
warn against this scenario, with the most obvious candidate being the size of the
largest cluster. However, simulations indicate that this alone will be insufficient as
the largest cluster does in fact grow out of proportion in typical runs of the pro-
cess. Nevertheless, the distribution of large clusters turns out to be sparse. The key
idea is then to track a smoother parameter involving the susceptibility, which is
essentially the second moment of the cluster-size distribution.

To simplify notation, normalize the cluster-sizes wi to sum to 1 so that the
initial distribution consists of n clusters of size 1

n
each. With this normalization,

the susceptibility χt is defined as
∑

i w
2
i , the sum of squares of cluster-sizes after
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the t th round. (We note in passing that this parameter has played a central role
in the study of the phase-transition in percolation and random graphs; see, e.g.,
[16, 26].) The proof that the size-biased protocol is optimal hinges on a carefully
chosen potential function �t = χtκt + C logκt , where κt denotes the number of
clusters after the t th round and C is an absolute constant chosen to turn �t into a
supermartingale. In Sections 3 and 4 we will control the evolution of �t and prove
our upper bound on the running time of the size-biased process.

The analysis of the uniform process U is delicate and relies on rigorizing and
analyzing the novel framework of Schramm [24, 25] for approximating the prob-
lem by an analytic one. We believe this technique is of independent interest and
may find additional applications in the analysis of high-dimensional stochastic pro-
cesses. Instead of seeking a single parameter to summarize the system behavior,
one instead measures the system using the Laplace transform of the entire cluster-
size distribution.

DEFINITION 1.2. For any integer t ≥ 0 let Ft be the σ -algebra generated by
the first t rounds of the process. Conditioned on Ft , define the functions Ft(s)

and Gt(s) on the domain R as follows. Let κ be the number of clusters and let
w1, . . . ,wκ be the normalized cluster-sizes after t rounds. Set

Ft(s) =
κ∑

i=1

exp(−wis), Gt(s) = 1

κ
Ft(κs).(1.1)

As we will further explain in Section 2, the Laplace transform Ft simultaneously
captures all the moments of the cluster-size distribution, in a manner analogous to
the moment generating function of a random variable. This form is particularly
useful in our application as we will see in Section 5 that the specific evaluation
Gt(

1
2) governs the expected coalescence rate. Furthermore, it turns out that it is

possible to estimate values of Ft (and Gt ) recursively. Although the resulting re-
cursion is nonstandard and highly complex, a somewhat intricate analysis eventu-
ally produces a lower bound for the uniform process.

1.5. Organization. The rest of this paper is organized as follows. In Section 2
we describe Schramm’s analytic approach for approximating the uniform pro-
cess U . Sections 3 and 4 are devoted to the size-biased process S . In the for-
mer we prove that E[τc(S)] = O(logn) and in the latter we build on this proof
together with additional ideas to show that τc(S) = O(logn) w.h.p. The final sec-
tion, Section 5, builds upon Schramm’s aforementioned framework to produce a
super-logarithmic lower bound for τc(U ).

2. Schramm’s analytic approximation framework for the uniform process.
In this section we describe Schramm’s analytic approach as it was presented in
[24, 25] for analyzing the uniform coalescence process U , as well as the numerical



498 P.-S. LOH AND E. LUBETZKY

evidence that Schramm obtained based on this approach suggesting that τc(U )

is super-logarithmic. Throughout this section we write approximations loosely as
they were sketched by Schramm and postpone any arguments on their validity
(including concentration of random variables, etc.) to Section 5, where we will
turn elements from this approach into a rigorous lower bound on τc(U ).

Let Ft denote the σ -algebra generated by the first t rounds of the coalescence
process U . The starting point of Schramm’s approach was to examine the following
function conditioned on Ft :

Ft(s) =
κt∑

i=1

exp(−wis),

where κt is the number of clusters after t rounds and w1, . . . ,wκt denote the nor-
malized cluster-sizes at that time (see Definition 1.2). The benefit that one could
gain from understanding the behavior of Ft(s) is obvious as Ft(0) recovers the
number of clusters at time t .

More interesting is the following observation of Schramm regarding the role
that Ft(κt/2) plays in the evolution of the clusters. Conditioned on Ft , the prob-
ability that the cluster Ci receives a merge request from another cluster Cj is 1

2wi

(the factor 1
2 accounts for the choice of Cj to issue rather than accept requests).

Thus, the probability that Ci will receive any incoming request in round t + 1 and
independently decide to be an acceptor is

1
2 [1 − (1 − wi/2)κt−1] ≈ 1

2 [1 − exp(−wiκt/2)].
On this event, Ci will account for one merge at time t + 1, and summing this over
all clusters yields

E[κt+1 | Ft ] ≈ κt − 1

2

κt∑
i=1

[1 − exp(−wiκt/2)] = 1

2
[κt + Ft(κt/2)]

or equivalently, re-scaling Ft(s) into Gt(s) = (1/κt )Ft (κt s) as in (1.1),

E[κt+1/κt | Ft ] ≈ 1 + Gt(1/2)

2
.(2.1)

In order to have τc(U ) � logn the number of clusters would need to typically drop
by at least a constant factor at each round. This would require the ratio in (2.1) to
be bounded away from 1, or equivalently, Gt(

1
2) should be bounded away from 1.

Unfortunately, the evolution of the sequence Gt(
1
2) = (1/κt )Ft (κt/2) appears

to be quite complex and there does not seem to be a simple way to determine its
limiting behavior. Nevertheless, Schramm was able to write down an approximate
recursion for the expected value of Ft+1 in terms of multiple evaluations of Ft by
observing the following. On the above event that Ci chooses to accept the merge
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request of some other cluster Cj , by definition of the process U , the identity of the
cluster Cj is uniformly distributed over all κt − 1 clusters other than Ci . Hence,

E[Ft+1(s) − Ft(s) | Ft ]
≈ ∑

i

1

2
(1 − e−wiκt /2)

1

κt

∑
j 	=i

(
e−(wi+wj )s − e−wis − e−wj s).

Ignoring the fact that the last sum in the approximation skips the diagonal terms
j = i, one arrives at a summation over all 1 ≤ i, j ≤ κt of exponents similar to
those in the definition of Ft with an argument of either s, κt/2, or s + κt/2, which,
after rearranging, gives

E[Ft+1(s) | Ft ] ≈ 1

2
Ft(s + κt/2) + 1

2κt

Ft (s)[Ft(s) + Ft(κt/2) − Ft(s + κt/2)].
To turn the above into an expression for Gt+1(s) one needs to evaluate Ft+1(κt+1s)

rather than Ft+1(κt s), to which end the approximation κt+1 ≈ 1
2 [1 + Gt(

1
2)]κt can

be used based on (2.1). Additionally, for the starting point of the recursion, note
that the initial configuration of wi = 1/κ0 for all 1 ≤ i ≤ κ0 has G0(s) = exp(−s).
Altogether, Schramm obtained the following deterministic analytic recurrence,
whose behavior should (approximately) dictate the coalescence rate:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g0(s) = exp(−s),

gt+1(s) = 1

2α

[
gt (αs)2 − gt

(
αs + 1

2

)
gt (αs) + gt

(
αs + 1

2

)
+ gt

(
1

2

)
gt (αs)

]
,

where α = 1

2

[
1 + gt

(
1

2

)]
.

In light of this, aside from the task of assessing how good of an approximation
the above defined functions gt provide for the random variables Gt along the uni-
form coalescence process U , the other key question is whether the sequence gt (

1
2)

converges to 1 as t → ∞, and if so, at what rate.
For the latter, as the complicated definition of gt+1 attests, analyzing the recur-

sion of gt seems highly nontrivial. Moreover, a naive evaluation of gt (
1
2) involves

exponentially many terms, making numerical simulations already challenging. The
computer-assisted numerical estimates performed by Schramm for the above re-
cursion, shown in Figure 2, seemed to suggest that indeed gt (

1
2) → 1 (albeit very

slowly), which should lead to a super-logarithmic coalescence time for U . How-
ever, no rigorous results were known for the limit of gt (

1
2) or its stochastic coun-

terpart Gt(
1
2).

As we show in Section 5, in order to turn Schramm’s argument into a rigor-
ous lower bound on τc(U ), we move our attention away from the sought value of
Gt(

1
2) and focus instead on Gt(1). By manipulating Schramm’s recursion for Gt

and combining it with additional analytic arguments and appropriate concentra-
tion inequalities, we show that as long as κt is large enough and Gt(

1
2) < 1 − δ for
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FIG. 2. Numerical estimations by Oded Schramm for the functions Gt(s) from his analytic approx-
imation of the uniform coalescence process. The left plot features Gt(s) for t = {0,2, . . . ,40} and
s ∈ [0,1] and demonstrates how these increase with t . The right plot focuses on Gt(

1
2 ) and suggests

that Gt(
1
2 ) → 1 and that in turn the coalescence rate should be super-logarithmic.

some fixed δ > 0, then typically Gt+1(1) > Gt(1) + ε for some ε(δ) > 0. Since
by definition 0 ≤ Gt(1) ≤ 1, this can be used to show that ultimately Gt(

1
2) → 1

w.h.p., and a careful quantitative version of this argument produces the rigorous
lower bound on τc(U ) stated in Theorem 1.1.

3. Expected running time of the size-biased process. The goal of this sec-
tion is to prove that the expected time for the size-biased process to complete has
logarithmic order, as stated in Proposition 3.1. Following a few simple observa-
tions on the process, we will prove this proposition using two key lemmas, Lem-
mas 3.4 and 3.5, whose proofs will appear in Sections 3.2 and 3.3, respectively. In
Section 4 we extend the proof of this proposition using some additional ideas to
establish that the coalescence time is bounded by O(logn) w.h.p.

PROPOSITION 3.1. Let τc = τc(S) denote the coalescence time of the size-
biased process S . Then there exists an absolute constant C > 0 such that E1[τc] ≤
C logn, where E1[·] denotes expectation w.r.t. an initial cluster distribution com-
prised of n singletons.

Throughout Sections 3 and 4 we refer only to the size-biased process and use
the following notation. Define the filtration Ft to be the σ -algebra generated by
the process up to and including the t th round. Let κt denote the number of clusters
after the conclusion of round t , noting that with these definitions we are interested
in bounding the expected value of the stopping time

τc = min{t :κt = 1}.(3.1)

As mentioned in the Introduction, we normalize the cluster-sizes so that they sum
to 1. Finally, the susceptibility χt denotes the sum of squares of the cluster-sizes
at the end of round t .
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Observe that by Cauchy–Schwarz, if w1, . . . ,wκt are the cluster-sizes at the end
of round t (and as such χt = ∑

i w
2
i ) then we always have

χtκt ≥
(

κt∑
i=1

wi

)2

= 1(3.2)

with equality iff all clusters have the same size. Indeed, the susceptibility χt

measures the variance of the cluster-size distribution. When χt is smaller (closer
to κ−1

t ), the distribution is more uniform. We further claim that

χt+1 ≤ 2χt for all t .(3.3)

To see this, note that if a cluster of size a merges with a cluster of size b the sus-
ceptibility increases by exactly (a + b)2 − (a2 + b2) = 2ab ≤ a2 + b2. Since each
round only involves merges between disjoint pairs of clusters, this immediately
implies that the total additive increase in susceptibility is bounded by the current
sum of squares of the cluster sizes, that is, the current susceptibility χt .

Before commencing with the proof of Proposition 3.1, we present a trivial linear
bound for the expected running time of the coalescence process, which will later
serve as the final step in our proof. Here and in what follows, Pw and Ew denote
probability and expectation given the initial cluster distribution w. While the es-
timate featured here appears to be quite crude when w is uniform, recall that in
general τc can in fact be linear in the initial number of clusters w.h.p., for example,
when w is comprised of one cluster of mass 1 − 1/

√
n and

√
n other clusters of

mass 1/n each.

LEMMA 3.2. Starting from κ clusters with an arbitrary cluster distribution
w = (w1, . . . ,wκ) we have Ew[τc] ≤ 8κ . Furthermore, Pw(τc > 16κ) ≤ e−κ/4.

PROOF. Consider an arbitrary round in which at least 2 clusters still remain.
We claim that the probability that there is at least one merge in this round is at
least 1

8 . Indeed, let C1 be a cluster of minimal size. The probability that it decides
to send a request is 1

2 , and since there are at least two clusters and C1 is the smallest
one, the probability that this request goes to some Cj with j 	= 1 is at least 1

2 .
Finally, the probability that Cj is accepting requests is again 1

2 . Conditioned on
these events, Cj will definitely accept some request (possibly not the one from C1
as another cluster of the same size as C1 may have sent it a request) leading to at
least one merge, as claimed.

The process terminates when the total cumulative number of merges reaches
κ − 1. Therefore, the time of completion is stochastically dominated by the sum
of κ − 1 geometric random variables with success probability 1

8 , and in particular
Ew[τc] ≤ 8(κ − 1).
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By the same reasoning, the total number of merges that occurred in the first t

rounds clearly stochastically dominates a binomial variable Bin(t, 1
8) as long as

t ≤ τc. Therefore,

Pw(τc > 16κ) ≤ P
(
Bin

(
16κ, 1

8

) ≤ κ − 1
) ≤ e−κ/4,

where the last inequality used the well-known Chernoff bounds (see, e.g., [17],
Theorem 2.1). �

3.1. Proof of Proposition 3.1 via two key lemmas. We next present the two
main lemmas on which the proof of the proposition hinges. The key idea is to
design a potential function comprised of two parts, �1,�2, while identifying a
certain event At such that the following holds: E[�1(t + 1) − �1(t) | Ft ,At ] <

c1 < 0 and E[�2(t + 1) − �2(t) | Ft ] < c2, where c1, c2 are absolute constants,
and a similar statement holds conditioned on Ac

t when reversing the roles of �1
and �2. At this point we will establish that an appropriate linear combination
of �1,�2 is a supermartingale, and the required bound on τc will follow from
optional stopping. Note that throughout the proof we make no attempt to optimize
the absolute constants involved. The event At of interest is defined as follows.

DEFINITION 3.3. Let At be the event that the following two properties hold
after the t th round:

(i) At least κt/2 clusters have size at most 1/(600κt ).
(ii) The cluster-size distribution satisfies

∑
i wi1{wi<41/κt } < 4 · 10−5.

The intuition behind this definition is that property (i) boosts the number of tiny
clusters, thereby severely retarding the growth of the largest clusters, which will
tend to see incoming requests from these tiny clusters. Property (ii) ensures that
most of the mass of the cluster-size distribution is on relatively large clusters, of
size at least 41 times the average.

Examining the event At will aid in tracking the variable χtκt , the normalized
susceptibility [recall from (3.2) that this quantity is always at least 1 and it equals 1
whenever all clusters are of the same size]. The next lemma, whose proof appears
in Section 3.2, estimates the expected change in this quantity and most notably
shows that it is at most − 1

200 if we condition on At .

LEMMA 3.4. Let �1(t) = χtκt and suppose that at the end of the t th round
one has κt ≥ 2. Then

E[�1(t + 1) − �1(t) | Ft ] ≤ 5(3.4)

and furthermore,

E[�1(t + 1) − �1(t) | Ft ,At , χt < 3 · 10−7] ≤ − 1
200 .(3.5)
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Fortunately, when At does not hold the behavior in the next round can still be
advantageous in the sense that in this case the number of clusters tends to fall by at
least a constant fraction. This is established by the following lemma, whose proof
is postponed to Section 3.3.

LEMMA 3.5. Let �2(t) = logκt and suppose that after the t th round one has
κt ≥ 2. Then

E[�2(t + 1) − �2(t) | Ft ,A
c
t ] < −2 · 10−7.(3.6)

We are now in a position to derive Proposition 3.1 from the above two lemmas.

PROOF OF PROPOSITION 3.1. Define the stopping time τ to be

τ = min{i :χt ≥ 3 · 10−7}.
Observe that the susceptibility is initially 1/n, its value is 1 once the process arrives
at a single cluster (i.e., at time τc) and until that point it is nondecreasing, hence,
Eτ ≤ Eτc < ∞ by Lemma 3.2. Further define the random variable

Zt = χtκt + 3 · 107 logκt + t

200
.

We claim that (Zt∧τ ) is a supermartingale. Indeed, consider E[Zt+1 | Ft , τ > t]
and note that the fact that τ > t implies in particular that κt ≥ 2 since in that case
χt < 3 · 10−7 < 1.

• If At holds then by (3.5) the conditional expected change in χtκt is below
− 1

200 , while logκt can only decrease (as κt is nonincreasing), hence, E[Zt+1 |
Ft ,At , τ > t] ≤ Zt .

• If At does not hold, then by (3.4) the conditional expected change in χtκt is at
most +5 whereas the conditional expected change in logκt is below −2 · 10−7

due to (3.6). By the scaling in the definition of Zt , these add up to give E[Zt+1 |
Ft ,A

c
t , τ > t] ≤ Zt − 199

200 .

Altogether, (Zt∧τ ) is indeed a supermartingale. As its increments are bounded and
the stopping time τ is integrable we can apply the optional stopping theorem (see,
e.g., [7], Chapter 5) and get

EZτ ≤ Z0 = χ0κ0 + 3 · 107 logκ0 = O(logn).(3.7)

At the same time, by definition of τ we have χτ ≥ 3 · 10−7 and so

Zτ = χτκτ + 3 · 107 logκτ + τ

200
≥ 3 · 10−7(κτ + τ/8).(3.8)

Taking expectation in (3.8) and combining it with (3.7) we find that

E[τ + 8κτ ] ≤ O(logn).



504 P.-S. LOH AND E. LUBETZKY

Finally, conditioned on the cluster distribution at time τ we know by Lemma 3.2
that the expected number of additional rounds it takes the process to conclude is at
most 8κτ , thus E[τc] ≤ E[τ + 8κτ ]. We can now conclude that E[τc] = O(logn),
as required. �

3.2. Proof of Lemma 3.4: Estimating the normalized susceptibility when At

holds. The first step in controlling the product χtκt is to quantify the coalescence
rate in terms of the susceptibility, as achieved by the following claim.

CLAIM 3.6. Suppose that at the end of the t th round one has κt ≥ 2. Then

E[κt+1 | Ft ] ≤ κt − (46χt)
−1(3.9)

and furthermore,

P
(
κt+1 < κt − (100χt )

−1 | Ft , χt < 3 · 10−7) ≥ 1 − e−100.

PROOF. To simplify the notation let κ = κt , χ = χt and κ ′ = κt+1 throughout
the proof of the claim. Further let the clusters Ci be indexed in increasing order of
their sizes and let wi = |Ci |.

Recall that the number of merges in round t + 1 is precisely the number of
clusters which decide to accept requests and then receive at least one incoming
request from a cluster of size no larger than itself. Consider the probability of the
latter event for a cluster Ci with i > κ/2�. Since the clusters are ordered by size
there are at least κ/2� clusters of size at most wi and each will send a request to
Ci independently with probability wi/2 (the factor of 2 is due to the probability
of issuing rather than receiving requests this round). The probability that none of
these clusters do so is thus at most (1 − wi/2)κ/2� ≤ e−wiκ/6 (where we used the
fact that κ/2� ≥ κ/3 for any κ ≥ 2), and altogether the probability that Ci accepts
a merge request from one of these clusters is at least 1

2(1 − e−wiκ/6). Summing
over these clusters we conclude that

E[κ − κ ′ | Ft ] ≥ ∑
i>κ/2�

1

2
(1 − e−wiκ/6) ≥

κ∑
i=1

1

4
(1 − e−wiκ/6),

where the last inequality follows from the fact that the summand is increasing in
wi and hence, the sum over the �κ/2� largest clusters should be at least as large
as the sum over the κ/2� smallest ones. Next, observe that by concavity, for all
0 ≤ wi ≤ 6χ the final summand is at least wi · 1

4(1 − e−χκ)/(6χ) which in turn
is at least wi · 1

4(1 − e−1)/(6χ) by (3.2). As this last expression always exceeds
wi/(38χ) we get

E[κ − κ ′ | Ft ] ≥ 1

38χ

∑
wi≤6χ

wi.(3.10)



STOCHASTIC COALESCENCE IN LOGARITHMIC TIME 505

We now aim to show that much of the overall mass is spread on clusters of size at
most 6χ . To this end recall that by definition χ = ∑

w2
i while

∑
i wi = 1, hence,

we can write χ = EY where Y is the random variable that accepts the value wi

with probability wi for i = 1, . . . , κ . This gives that

∑
wi≤6χ

wi = P(Y ≤ 6EY) >
5

6

(with the final bound due to Markov’s inequality) and revisiting (3.10) we obtain
that

E[κ − κ ′ | Ft ] >
1

38χ
· 5

6
>

1

46χ
,

establishing inequality (3.9).
To complete the proof of the claim it suffices to show that the random variable

X = κ − κ ′ is suitably concentrated, to which end we use Talagrand’s inequal-
ity (see, e.g., [21], Chapter 10). In its following version we say that a function
f :

∏
i 
i → R is C-Lipschitz if changing its argument ω in any single coordinate

changes f (ω) by at most C, and that f is r-certifiable if for every s and ω with
f (ω) ≥ s there exists a subset I of at most rs coordinates such that every ω′ that
agrees with ω on the coordinates indexed by I also has f (ω′) ≥ s. In the context
of a product space 
 = ∏

i 
i these definitions carry to the random variable that
f corresponds to via the product measure.

THEOREM 3.7 (Talagrand’s inequality). If X is a C-Lipschitz and r-certifiable
random variable on 
 = ∏n

i=1 
i , then P(|X − EX| > t + 60C
√

rEX) ≤
4 exp(−t2/(8C2rEX)) for any 0 ≤ t ≤ EX.

Observe that round t + 1, conditioned on Ft , is clearly a product space as the
actions of the individual clusters are independent. Formally, each cluster chooses
either to accept requests or to send a request to a random cluster. Changing the
action of a single cluster can only affect X, the number of merges in round t + 1,
by at most one merge and so X is 1-Lipschitz. Also, if X ≥ s then one can iden-
tify s clusters which accepted merge requests from smaller clusters. By fixing the
decisions of the 2s clusters comprising these merges (the acceptors together with
their corresponding requesters) we must have X ≥ s regardless of the other clus-
ters’ actions, as the s acceptors will accept (possibly different) merge-requests no
matter what. Thus, X is also 2-certifiable.

Let μ = EX and assume now that χ < 3 · 10−7. By the first part of the proof
[equation (3.9)], it then follows that μ ≥ (46χ)−1 > 70,000, in which case Tala-
grand’s inequality gives

P

(
|X − μ| > μ

6
+ 60

√
2μ

)
≤ 4 exp

(−(μ/6)2/(16μ)
) = 4e−μ/576 < e−100.
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Also, note that our above bound μ > 70000 > 2 · 1802 implies that

60
√

2μ < μ/3,

so in fact the probability of X falling below μ − (
μ
6 + μ

3 ) is at most e−100. As
μ ≥ (46χ)−1 we conclude that κ − κ ′ = X > (100χ)−1 with probability at least
1 − e−100, as required. �

As the above claim demonstrated the effect of the susceptibility on the coa-
lescence rate, we move to study the evolution of the susceptibility. The critical
advantage of the size-biased process is that large clusters grow more slowly than
small clusters. The intuition behind this is that larger clusters tend to receive more
requests, and since clusters choose to accept their smallest incoming request, these
clusters typically have more choices to minimize over. It turns out that this effect is
enough to produce a useful quantitative bound on the growth of the susceptibility.

CLAIM 3.8. Suppose that after the t th round κt ≥ 2. Then

E[χt+1 | Ft ] ≤ χt + 5

κt

.(3.11)

PROOF. Set κ = κt and χ = χt . Let the clusters Ci be indexed in increasing
order of their sizes and let wi = |Ci |. For each cluster Ci let the random variable
Xi be the size of the smallest cluster that it receives a merge request from, as long
as that cluster is no larger than itself, and not itself; otherwise (the case where Ci

receives no merge requests from another cluster of size less than or equal to its
own) set Xi = 0. Under these definitions we have

E[χt+1 | Ft ] = χ +
κ∑

i=1

wiE[Xi],(3.12)

since each Ci is an acceptor with probability 1
2 and if it indeed accepts a request

from a cluster of size Xi then the susceptibility will increase by exactly (wi +
Xi)

2 − (w2
i + X2

i ) = 2wiXi .
Next, note that since we ordered the clusters by increasing order of size, each

of the first κ/2� clusters has size at most 2/κ (otherwise the last �κ/2� clus-
ters would combine to a total mass larger than 1). We will use this fact to bound
E[Xi | Ft ] by considering two situations:

(1) If Ci receives an incoming request from at least one of the first κ/2� clus-
ters (including itself), then Xi ≤ 2/κ by the above argument. The probability of
this is precisely 1 − (1 − wi

2 )κ/2� as each of the first κ/2� clusters Cj indepen-
dently sends a request to Ci with probability wi/2 (with the factor of 2 due to the
decision of Cj whether or not to issue requests).
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(2) If Ci gets no requests from the first κ/2� clusters, then use the trivial bound
Xi ≤ wi .

Combining the two cases we deduce that

EXi ≤
(

1 −
(

1 − wi

2

)κ/2�) 2

κ
+

(
1 − wi

2

)κ/2�
wi.(3.13)

We claim that EXi is in fact always at most 5/κ . To see this, first note that if wi ≤
2/κ then this immediately holds, for example, since Xi ≤ wi . Consider therefore
the case where wi > 2/κ . Since (3.13) is a weighted average of 2/κ and wi > 2/κ ,
it increases whenever the weight on wi is increased. As(

1 − wi

2

)κ/2�
≤ e−(wi/2)κ/2� ≤ e−wiκ/6,

we have that, in this case,

EXi ≤ (1 − e−wiκ/6)
2

κ
+ e−wiκ/6wi ≤ 1

κ
(2 + wiκe−wiκ/6).

One can easily verify that the function f (x) = xe−x/6 satisfies f (x) ≤ 3 for all x,
hence, we conclude that EXi ≤ 5/κ in all cases, as claimed. Plugging this into
(3.12) we obtain that

E[χt+1 | Ft ] ≤ χ + 5

κ

κ∑
i=1

wi = χ + 5

κ

as required. �

While the last claim allows us to limit the growth of the susceptibility, this
bound is unfortunately too weak in general. For instance, when used in tandem
with Claim 3.6, it results in the susceptibility growing out of control, while the
number of clusters decreases slower and slower. Crucially, however, conditioned
on the event At (as given in Definition 3.3) we can refine these bounds to show that
the growth of χt+1 slows down dramatically, as the following claim establishes.

CLAIM 3.9. Suppose that at the end of the t th round κt ≥ 2. Then

E[χt+1 | Ft ,At ] ≤ χt + (201κt )
−1.(3.14)

PROOF. Let κ = κt and χ = χt , and define the random variables Xi as in the
proof of Claim 3.8. By the same reasoning used to deduce inequality (3.13), only
now using property (i) of At according to which each of the smallest �κ/2� clusters
has size at most 1/(600κt ), we have

EXi ≤
(

1 −
(

1 − wi

2

)�κ/2�) 1

600κ
+

(
1 − wi

2

)�κ/2�
wi.(3.15)
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Recall that equation (3.12) established that E[χt+1 | Ft ] = χ + ∑κ
i=1 wiEXi . This

time we will need to bound this sum more delicately by splitting it into two parts
based on whether or not wi < 41/κ . In the case wi < 41/κ we can use the trivial
bound Xi ≤ wi to arrive at

∑
i

wi1{wi<41/κ}EXi <
∑
i

wi1{wi<41/κ}
41

κ
< 4 · 10−5 · 41

κ
,

where the last inequality is by property (ii) of At . For the second part of the sum-
mation we use the same weighted mean argument from the proof of Claim 3.8 to
deduce that when wi > (600κ)−1, the right-hand side of (3.15) increases with the
weight on wi , which in turn is at most (1− wi

2 )�κ/2� ≤ exp(−wiκ/4). In particular,
in case wi ≥ 41/κ , we have

EXi ≤ (1 − e−wiκ/4)
1

600κ
+ e−wiκ/4wi ≤ 1

κ

(
1

600
+ wiκe−wiκ/4

)

≤ 1

κ

(
1

600
+ 41e−41/4

)

(here we used the fact that the function xe−x/4 is decreasing for x ≥ 41). Combin-
ing our bounds,

κ∑
i=1

wiEXi ≤ 1

κ

(
4 · 10−5 · 41 + ∑

i

wi1{wi≥41/κ}
(

1

600
+ 41e−41/4

))
<

1

201κ

since
∑

i wi = 1. Together with (3.12), the proof is complete. �

Combining the bound on κt+1 in Claim 3.6 with the bounds on χt+1 from
Claims 3.8 and 3.9 will now result in the statement of Lemma 3.4.

PROOF OF LEMMA 3.4. For convenience let κ = κt and χ = χt , as well as
κ ′ = κt+1 and χ ′ = χt+1. The first statement of the lemma is an immediate conse-
quence of Claim 3.8 since κ ′ ≤ κ and so

E[χ ′κ ′ | Ft ] ≤ κE[χ ′ | Ft ] ≤ κ

(
χ + 5

κ

)
= χκ + 5.

For the second statement, since we can break down χ ′κ ′ into

χ ′κ ′ = χ ′
(
κ − 1

100χ

)
+ χ ′

(
κ ′ − κ + 1

100χ

)
1{κ ′≥κ−1/(100χ)}

+ χ ′
(
κ ′ − κ + 1

100χ

)
1{κ ′<κ−1/(100χ)},

noticing that the last expression in the right-hand side is at most 0, and recalling
that 0 < χ ≤ χ ′ ≤ 2χ [due to (3.3)] and 1 ≤ κ ′ ≤ κ , we now obtain that E[χ ′κ ′ |
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Ft ,At , χ < 3 · 10−7] is at most

E

[
χ ′

(
κ − 1

100χ

) ∣∣∣ Ft ,At , χ < 3 · 10−7
]

+ E

[
2χ · 1

100χ
1{κ ′≥κ−1/(100χ)}

∣∣∣ Ft ,At , χ < 3 · 10−7
]

=
(
κ − 1

100χ

)
E[χ ′ | Ft ,At , χ < 3 · 10−7]

+ 1

50
P

(
κ ′ ≥ κ − 1

100χ

∣∣∣ Ft ,At , χ < 3 · 10−7
)
.

Applying Claims 3.6 and 3.9 now gives

E[χ ′κ ′ | Ft ,At , χ < 3 · 10−7] ≤
(
κ − 1

100χ

)(
χ + 1

201κ

)
+ 1

50
e−100

< χκ − 1

100
+ 1

201
+ 1

50
e−100

< χκ − 1

200

and the proof is complete. �

3.3. Proof of Lemma 3.5: Estimating the number of components when At fails.
We wish to show that whenever either one of the two properties specified in At

does not hold, the expected number of clusters drops by a constant factor.
Suppose that property (i) of At fails. In this case a constant fraction of the

clusters have size which is at least a constant fraction of the average size 1/κt .
We will show that each such cluster receives an incoming request (from another
cluster of no larger size) in the next round with a probability that is uniformly
bounded from below. Consequently, we will be able to conclude that the number
of clusters shrinks by at least a constant factor in expectation.

CLAIM 3.10. Suppose that at the end of the t th round κt ≥ 2 and prop-
erty (i) of At does not hold, that is, more than κt/2 clusters have size greater
than (600κt )

−1. Then

E[κt+1 | Ft ] ≤ (1 − 5 · 10−5)κt .(3.16)

PROOF. Let κ = κt and κ ′ = κt+1 and as usual, order the clusters by increas-
ing order of size. Consider an arbitrary cluster Ci which is one of the last �κ/2�
clusters, and let wi denote its size. If Ci opts to accept requests in this round (with
probability 1

2 ) and any of the first κ/2� clusters sends it a request, it will contribute
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a merge in this round. This occurs with probability

1

2

(
1 −

(
1 − wi

2

)κ/2�)
≥ 1

2
(1 − e−wiκ/6) >

1

2
(1 − e−1/3600) > 10−4,

where we used our assumption that wi ≥ (600κ)−1. Thus, the probability that Ci

contributes to a merge is at least 10−4. We conclude that the expected number of
merges in this round is at least 10−4�κ/2�, from which the desired result follows.

�

Now suppose that property (ii) of At fails. Here at least a constant proportion of
the mass of the cluster-size distribution falls on clusters with size at most a constant
multiple of the average size. Such clusters behave nicely as in this window the
relation between the cluster-size and the typical number of incoming requests can
be bounded by a linear function. Again, this will result in a constant proportion of
clusters merging in the next round in expectation.

CLAIM 3.11. Suppose that at the end of the t th round κt ≥ 2 and property (ii)
of At does not hold, that is,

∑
i wi1{wi<41/κt } ≥ 4 ·10−5, where wi denotes the size

of Ci . Then

E[κt+1 | Ft ] ≤ (1 − 2 · 10−7)κt .(3.17)

PROOF. Let κ = κt and κ ′ = κt+1. Order the clusters by size and let r be
the number of clusters which are smaller than 41/κ . Since clearly at most κ/41
clusters can have size at least 41/κ , we have r ≥ �40

41κ�. Notice that since κ ≥ 2,
this implies that in particular r/2� ≥ κ/3. By the same arguments as before, each
cluster Ci with r/2� < i ≤ r will accept a merge request from a smaller cluster
with probability at least

1

2

(
1 −

(
1 − wi

2

)r/2�)
≥ 1

2

(
1 − e−(wi/2)r/2�) ≥ 1

2
(1 − e−wiκ/6).

Since we are concentrating our attention on the clusters of size wi < 41/κ , con-
cavity implies that the last expression is actually at least

1

2
(1 − e−41/6)

wi

41/κ
>

wiκ

100
.

We conclude that the expected number of merges in this round is at least
r∑

i=r/2�+1

wiκ

100
≥ κ

100
· 1

2

r∑
i=1

wi ≥ κ

100
· 1

2
· 4 · 10−5 = 2 · 10−7κ,

where we used the fact that the wi ’s are sorted in increasing order to relate the sum
over the cluster indices r/2� + 1, . . . , r to the one over the first r clusters. This
gives the desired result. �
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PROOF OF LEMMA 3.5. The proof readily follows from the combination of
Claims 3.10 and 3.11. Indeed, these claims establish that whenever the event At

fails we have

E[κt+1 | Ft ,A
c
t ] ≤ (1 − 2 · 10−7)κt .

Therefore, by the concavity of the logarithm, Jensen’s inequality implies that

E[logκt+1 | Ft ,A
c
t ] ≤ log E[κt+1 | Ft ,A

c
t ] ≤ logκt + log(1 − 2 · 10−7)

< logκt − 2 · 10−7

as required. �

4. Optimal upper bound for size-biased process. We now prove the upper
bound in Theorem 1.1 by building upon the ideas of the previous section. Recall
that in the proof of Proposition 3.1 we defined the sequence

Zt = χtκt + M logκt + t

200
where M = 3 · 107,

established that it was a supermartingale and derived the required result from op-
tional stopping. That approach was only enough to produce a bound on E[τc], the
expected completion time. For the stronger result on the typical value of τc we will
analyze (Zt ) more delicately. Namely, we estimate its increments in L2 to qualify
an application of an appropriate Bernstein–Kolmogorov large-deviation inequality
for supermartingales due to Freedman [13].

An important element in our proof is the modification of the above given vari-
able Zt into an overestimate Yt which allows far better control over the increments
in L2. This is defined as

Y0 = Z0 = χ0κ0 + M logκ0 = 1 + M logn,
(4.1)

Yt+1 =
⎧⎨
⎩Yt + (�t+1 ∧ log2/3 n) + M log

κt+1

κt

+ 1

200
, if τc > t ,

Yt , if τc ≤ t ,

where

�t+1 = χt+1

(
κt+1 ∨

(
κt − 1

χt

))
− χtκt .

The purpose of the (κt − 1
χt

) term is to limit the potential decrease from negative �.
In this section, we will need two-sided estimates (in addition to one-sided bounds
such as those used in the previous section) due to the fact that we must control the
L2 increments.

It is clear that Yt+1 − Yt ≥ Zt+1 − Zt as long as t < τc and �t+1 ≤ log2/3 n.
Therefore, setting

τ̄ = min{t :�t+1 > log2/3 n},



512 P.-S. LOH AND E. LUBETZKY

it follows that

Yt ≥ Zt for all t ≤ τc ∧ τ̄ .(4.2)

In what follows we will establish a large deviation estimate for (Yt ), then use this
overestimate for Zt to show that w.h.p. τc = O(logn). We thus focus our attention
on the sequence (Yt ).

LEMMA 4.1. The sequence (Yt ) is a supermartingale.

PROOF. Since by definition Yt = Yt∧τc , it suffices to consider the times t < τc.
As we clearly have (κt+1 ∨ (κt − 1

χt
)) ≤ κt and Claim 3.8 established that E[χt+1 |

Ft ] ≤ χt + 5
κt

, we can deduce that

E[�t+1 | Ft ] ≤ 5.(4.3)

Combined with Lemma 3.5 as in the proof of Proposition 3.1, it then follows that

E[Yt+1 | Ft ,A
c
t ] ≤ 0.

We turn to consider E[Yt+1 | Ft ,At ]. Since κt+1 ≤ κt holds for all t , it suffices to
show that

E[�t+1 | Ft ,At ] ≤ − 1

200
.

Indeed, as in the proof of Lemma 3.4, we write

�t+1 ≤ χt+1

(
κt − 1

100χt

)

+ χt+1

[(
κt+1 ∨

(
κt − 1

χt

))
− κt + 1

100χt

]
1{κt+1≥κt−1/(100χt )} − χtκt

≤ χt+1

(
κt − 1

100χt

)
+ 2χt · 1

100χt

1{κt+1≥κt−1/(100χt )} − χtκt ,

which as stated before gives rise to

E[�t+1 | Ft ,At ] < − 1
100 + 1

201 + 1
50e−100 < − 1

200 ,

and we conclude that (Yt ) is indeed a supermartingale, as required. �

LEMMA 4.2. The increments of the supermartingale (Yt ) are uniformly
bounded in L2. Namely, for every t we have E[(Yt+1 − Yt )

2 | Ft ] < 2M2 where
M = 3 · 107.

PROOF. First observe that

(Yt+1 − Yt )
2 ≤ 3(�t+1)

2 + 3
(
M log

κt+1

κt

)2

+ 3
(

1

200

)2

.(4.4)
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Since 1
2κt ≤ κt+1 ≤ κt , we have −M log 2 ≤ M log κt+1

κt
≤ 0, hence, the last two

expressions above sum to, at most, 3
2M2 (with room to spare) and it remains to

bound E[(�t+1)
2 | Ft ] = O(1) for a suitably small implicit constant.

Observe that when �t+1 ≥ 0 we must have |�t+1| ≤ χt+1κt − χtκt since
(κt+1 ∨ (κt − 1

χt
)) ≤ κt . Conversely, if �t+1 ≤ 0 then necessarily |�t+1| ≤ χtκt −

χt+1(κt − 1
χt

) ≤ 1, with the last inequality due to the fact that κt ≥ 1/χt and
χt+1 ≥ χt . Combining the cases we deduce that, in particular,

|�t+1| ≤ κt (χt+1 − χt) + 1.

By Claim 3.8 we have E[χt+1 − χt | Ft ] ≤ 5/κt , hence, we get

E[(�t+1)
2 | Ft ] ≤ κ2

t E[(χt+1 − χt)
2 | Ft ] + 1 + 2κt (5/κt )

(4.5)
≤ κ2

t E[(χt+1 − χt)
2 | Ft ] + 11.

It remains to show that E[(χt+1 − χt)
2 | Ft ] = O(1/κ2

t ). To do so, let w1, . . . ,wκt

be the cluster-sizes after the t th round and recall that by (3.12) and the arguments
following it we have

E[(χt+1 − χt)
2 | Ft ] = E

[(
κt∑

i=1

2wiXiIi

)2]
,

where each Xi is a nonnegative random variable satisfying EXi ≤ 5/κt (marking
the size of another cluster of no larger size that issued a request to Ci or 0 if there
was no such cluster) and each Ii is a Bernoulli( 1

2 ) variable independent of Xi

(indicating whether or not Ci chose to accept requests). Since
∑

wi = 1, it follows
from convexity that (

κt∑
i=1

wiXiIi

)2

≤
κt∑

i=1

wiX
2
i Ii,

hence, taking expectation while recalling that Ii and Xi are independent,

E[(χt+1 − χt)
2 | Ft ] ≤ 4

κt∑
i=1

wi(EX2
i )P(Ii) = 2

κt∑
i=1

wiEX2
i ,

and it remains to bound EX2
i . Following the same argument that led to (3.13) now

gives

EX2
i ≤

(
1 −

(
1 − wi

2

)κt /2�)(
2

κt

)2

+
(

1 − wi

2

)κt /2�
w2

i .

As before, we now deduce that either wi ≤ 2/κt , in which case clearly EX2
i ≤

4/κ2
t , or we have

EX2
i ≤ (1 − e−wiκt /6)

4

κ2
t

+ e−wiκt /6w2
i ≤ 1

κ2
t

(
4 + e−wiκt /6(wiκt )

2)
.
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Since x2 exp(−x/6) < 20 for all x ≥ 0, it then follows that EX2
i < 24/κ2

t (with
room to spare). Either way we deduce that

E[(χt+1 − χt)
2 | Ft ] < 2

∑
i

(wi · 24/κ2
t ) = 48/κ2

t

and so, going back to (4.5),

E[(�t+1)
2 | Ft ] < 48 + 11 < 60.(4.6)

Using this bound in (4.4) we can conclude the proof as we have

E[(Yt+1 − Yt )
2 | Ft ] < 3E[(�t+1)

2 | Ft ] + 3
2M2 < 2M2. �

By now we have established that (Yt ) is a supermartingale which satisfies
Yt+1 − Yt ≤ L for a value of L = log2/3 n + 1

200 and that, in addition, E[(Yt+1 −
Yt )

2 | Ft ] ≤ 2M2. We are now in a position to apply the following inequality due
to Freedman [13]; we note that this result was originally stated for martingales yet
its proof, essentially unmodified, extends also to supermartingales.

THEOREM 4.3 ([13], Theorem 1.6). Let (Si) be a supermartingale with re-
spect to a filter (Fi ). Suppose Si −Si−1 ≤ L for all i, and write Vt = ∑t

i=1 E[(Si −
Si−1)

2 | Fi−1]. Then for any s, v > 0,

P({St ≥ S0 + s,Vt ≤ v} for some t ) ≤ exp
(−1

2s2/(v + Ls)
)
.

By the above theorem and a standard application of optional stopping, for any
s > 0, integer t and stopping time τ we have P(Yt∧τ ≥ Y0 + s) ≤ exp(−1

2s2/

(2M2t + Ls)). In particular, letting

t0 = 500M logn

and plugging s = log3/4 n and τ = τ̄ in the last inequality we deduce that

P(Yt0∧τ̄ ≥ Y0 + log3/4 n) ≤ exp
(−(1

2 − o(1)
)

log1/12 n
) = o(1).

Hence, recalling the value of Y0 from (4.1) we have w.h.p.

Yt0∧τ̄ ≤ 1 + M logn + log3/4 n ≤ 2M logn,(4.7)

where the last inequality holds for sufficiently large n.
In order to compare t0 and τ̄ , recall from (4.3) that E[�t+1 | Ft ] ≤ 5, whereas

we established in (4.6) that E[(�t+1)
2 | Ft ] < 60. By Chebyshev’s inequality,

P(�t+1 ≥ log2/3 n | Ft ) = O(E[(�t+1)
2 | Ft ] log−4/3 n) = O(log−4/3 n).

In particular, a union bound implies that

P(τ̄ ≤ t0) = O(log−1/3 n).
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Revisiting (4.7) this immediately implies that w.h.p.

Yt0 ≤ 2M logn,

and since Yt0∧τ̄∧τc ≥ Zt0∧τ̄∧τc [due to (4.2)], we further have that w.h.p.

Yt0∧τc ≥ Zt0∧τc ≥ t0 ∧ τc

200
.

Therefore, we must have τc < t0 w.h.p., otherwise the last two inequalities would
contradict our choice of t0 = 500M logn. The proof is complete.

5. Super-logarithmic lower bound for the uniform process. In this section
we use the analytic approximation framework introduced by Schramm to prove the
super-logarithmic lower bound stated in Theorem 1.1 for the coalescence time of
the uniform process. Recall that a key element in this framework is the normalized
Laplace transform of the cluster-size distribution, namely, Gt(s) = (1/κt )Ft (κt s),
where Ft(s) = ∑κt

i=1 e−wis (see Definition 1.2). The following proposition, whose
proof entails most of the technical difficulties in our analysis of the uniform pro-
cess, demonstrates the effect of Gt(

1
2) and Gt(1) on the coalescence rate.

PROPOSITION 5.1. Let εt = 1 − Gt(
1
2) and ζt = Gt(1). There exists an ab-

solute constant C > 0 such that, conditioned on Ft , with probability at least
1 − Cκ−100

t , we have

|κt+1 − (1 − εt/2)κt | ≤ κ
2/3
t ,(5.1)

ζt+1 ≥ ζt + ε
13/εt
t − 8κ

−1/3
t .(5.2)

We postpone the proof of this proposition to Section 5.4 in favor of showing how
the relations that it establishes between κt ,Gt(1),Gt(

1
2) can be used to derive the

desired lower bound on τc. We claim that as long as κt ,Gt(
1
2),Gt(1) satisfy equa-

tions (5.1), (5.2) and t = O(logn · log log logn
log logn

), then κt ≥ n3/4; this deterministic
statement is given by the following lemma.

LEMMA 5.2. Set T = 1
75 logn · log logn

log log logn
for a sufficiently large n and let

κ0, . . . , κT be a sequence of integers in {1, . . . , n} with κ0 = n. Further, let εt and
ζt for t = 0, . . . , T be two sequences of reals in [0,1] and suppose that for all
t < T the three sequences satisfy inequalities (5.1) and (5.2). Then κt > n3/4 for
all t ≤ T .

Observe that the desired lower bound on the coalescence time of the uniform
process U is an immediate corollary of Proposition 5.1 and Lemma 5.2. Indeed,
condition on the first t rounds where 0 ≤ t < T = 1

75 logn · log logn
log log logn

and assume
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κt > n3/4. Proposition 5.1 implies that equations (5.1), (5.2) hold except with prob-
ability O(κ−100

t ) = o(n−1). In this event Lemma 5.2 yields κt+1 > n3/4, extending
our assumption to the next round. Accumulating these probabilities for all t < T

now shows that P(κT > n3/4) = 1 − o(T /n) and in particular τc > T w.h.p., as
required.

PROOF OF LEMMA 5.2. The proof proceeds by induction. Assuming that κi >

n3/4 for all i ≤ t < T , we wish to deduce that κt+1 > n3/4.
Repeatedly applying equation (5.2) and using the induction hypothesis we find

that

ζt+1 ≥ ζ0 +
t∑

i=0

(ε
13/εi

i − 8κ
−1/3
i ) >

t∑
i=0

(ε
13/εi

i ) − 8(t + 1)(n3/4)−1/3

(5.3)

=
t∑

i=0

(ε
13/εi

i ) − n−1/4+o(1)

since t ≤ T = no(1). Following this, we claim that the set I = {0 ≤ i ≤ t : εi ≥
15 log log logn

log logn
} has size at most (logn)9/10. Indeed, as x1/x is monotone increasing

for all x ≤ e, every such i ∈ I has

ε
13/εi

i ≥
(

15
log log logn

log logn

)13 log logn/(15 log log logn)

= (logn)−13/15+o(1) > (logn)−9/10,

where the last inequality holds for large n. Hence, if we had |I | > 2(logn)9/10 then
it would follow from (5.3) that ζt+1 > 2 − o(1), contradicting the assumption of
the lemma for large enough n.

Moreover, by the assumption that εi ∈ [0,1], we have 1
2 ≤ (1 − εi/2) ≤ 1 for

all i. Together with the facts that κi+1 ≥ (1 − εi/2)κi − κ
2/3
i for all i ≤ t due to

(5.1) while κi ≤ n for all i we now get

κt+1 ≥ κ0

t∏
i=0

(1 − εi/2) −
t∑

i=0

κ
2/3
i

≥
(

1 − 1

2
· 15 log log logn

log logn

)t

2−|I |n − (t + 1)n2/3

≥ e−15(log log logn)T /log logn2−|I |n − T n2/3,

where the last inequality used the fact that t < T as well as the inequality 1−x/2 >

e−x , valid for all 0 < x < 1. Now, 2−|I | = n−o(1) since |I | ≤ 2(logn)9/10 and by
the definition of T we obtain that

κt+1 ≥ e−(logn)/5n1−o(1) − n2/3+o(1) = n4/5−o(1) > n3/4
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for sufficiently large n, as claimed. The proof is complete. �

The remaining sections are devoted to the proof of Proposition 5.1 and are or-
ganized as follows. In Section 5.1 we will relate Gt(

1
2) to the expected change

in κt . While unfortunately there is no direct recursive relation for the sequence
{Gt(

1
2) : t ≥ 0}, in Section 5.2 we will approximate E[Ft+1(κt s) | Ft ] [closely re-

lated to Gt+1(s) = (1/κt+1)Ft+1(κt+1s)] in terms of several evaluations of Gt .
We will then refine our approximation of Gt+1(

1
2) in Section 5.3 by examining

Ft+1(s) at a point s ≈ E[1
2κt+1 | Ft ]. Finally, these ingredients will be combined

into the proof of Proposition 5.1 in Section 5.4.

5.1. Relating Gt(
1
2) to the coalescence rate. The next lemma shows that the

value of Gt(
1
2) governs the expected number of merges in round t + 1.

LEMMA 5.3. Suppose that after t rounds we have κt ≥ 2 clusters and set
εt = 1 − Gt(

1
2). Then ∣∣E[κt+1 | Ft ] − (1 − εt/2)κt

∣∣ ≤ 1
4 .(5.4)

This emphasizes the importance of tracking the value of Gt(
1
2), as one could

derive a lower bound on the coalescence time by showing that Gt(
1
2) is sufficiently

close to 1 (i.e., εt is suitably small). In order to prove this lemma we first require
two straightforward facts on the functions involved.

CLAIM 5.4. The following holds for all t with probability 1. The function
Gt(·) is convex, decreasing and 1-Lipschitz on the domain R

+. Furthermore,
Gt(s) ≥ e−s for any s.

PROOF. Denote the cluster-sizes at the end of round t by w1, . . . ,wκt . Recall
that by definition Gt(s) = (1/κt )Ft (κt s) = (1/κt )

∑
i e

−wiκt s is an arithmetic mean
of negative exponentials of s, hence, convex and decreasing. Moreover, its first
derivative is G′

t (s) = F ′
t (κt s) and in particular

G′
t (0) = F ′

t (0) = −∑
i

wi = −1.

Since G′
t (s) is increasing and negative we deduce that Gt is indeed 1-Lipschitz.

Finally, since the negative exponential function is convex, Jensen’s inequality con-
cludes the proof by yielding

Gt(s) = 1

κt

∑
i

e−wiκt s ≥ e−(1/κt )
∑

i wiκt s = e−s .
�

CLAIM 5.5. For any real numbers 0 ≤ x ≤ 1 and κ > 0 we have (1 − x)κ ≥
e−κx − (eκ)−1.
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PROOF. Fix κ > 0 and consider the function f (x) = κ(e−κx − (1 − x)κ). The
desired inequality is equivalent to having f (x) ≤ 1/e for all 0 ≤ x ≤ 1, hence, it
suffices to bound f (x) at all local maxima, then compare that bound to its values
at the endpoints f (0) = 0 and f (1) = κe−κ .

It is easy to verify that any local extrema x∗ must satisfy (1 − x∗)κ−1 = e−κx∗
,

and so

f (x∗) = κe−κx∗(
1 − (1 − x∗)

) = (κx∗)e−κx∗
.

Since ye−y ≤ 1/e for any y ∈ R, both f (x∗) and f (1) are at most 1/e, as required.
�

PROOF OF LEMMA 5.3. Let κ = κt and κ ′ = κt+1, and as usual let w1, . . . ,wκ

denote the cluster-sizes at the end of t rounds. Recalling the definition of the uni-
form coalescence process, the number of pairs of clusters that merge in round t +1
is equal to the number of clusters which:

(a) select to be acceptors in this round, and
(b) receive at least one incoming request in this round.

(Compare this simple characterization with the number of merges in the size-
biased process, where one must also consider the cluster-sizes of the incoming
requests relative to the size of the acceptor.) A given cluster Ci becomes an ac-
ceptor with probability 1

2 , and conditioning on this event we are left with κ − 1
other clusters, each of which may send a request to the cluster Ci with probability
wi/2 (the factor of 2 accounts for the choice to issue rather than accept requests
this round) independently of its peers. Altogether we conclude that the probability
that Ci accepts an incoming request is exactly 1

2(1 − (1 − wi/2)κ−1) and so the
expected total number of merges is

E[κ − κ ′ | Ft ] = 1

2

∑
i

(
1 − (1 − wi/2)κ−1)

.

Therefore,

E[κ − κ ′ | Ft ] ≥ 1

2

∑
i

(
1 − e−wi(κ−1)/2) = 1 − Gt((κ − 1)/(2κ))

2
κ

≥ 1 − Gt(1/2)

2
κ − 1

4
,

where the last inequality is due to Gt being 1-Lipschitz as was established in
Claim 5.4. For an upper bound on the expected number of merges we apply
Claim 5.5, from which it follows that

E[κ − κ ′ | Ft ] ≤ 1

2

∑
i

(
1 − e−wi(κ−1)/2 + 1

eκ

)
≤ 1

2

∑
i

(1 − e−wiκ/2) + 1

2e

= 1 − Gt(1/2)

2
κ + 1

2e
.
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Combining these bounds gives the required result. �

5.2. Recursive approximation for Ft . Despite the fact that there is no direct
recursion for the values of Gt(

1
2), it turns out that on the level of expectation one

can recover values of its counterpart Ft+1 from several different evaluations of Gt .
Note that this still does not provide an estimate for the expected value of Gt+1, as
the transformation between the Ft+1 and Gt+1 unfortunately involves the number
of clusters at time t + 1, thereby introducing nonlinearity to the approximation.

LEMMA 5.6. Suppose that after t rounds κt ≥ 2 and let εt = 1 − Gt(
1
2). Then

E[Ft+1(κt s) | Ft ] > (1 − εt/2)κt

[
α

α + β
Gt(s) + β

α + β
Gt

(
s + 1

2

)]
− 2,(5.5)

where

α = α(s, t) = Gt(s) + Gt

(1
2

)
, β = β(s, t) = 1 − Gt(s).

REMARK. Although the approximation in (5.5) may look intractable, its struc-
ture is in fact quite useful. The leading factor (1 − εt/2)κt is essentially E[κt+1 |
Ft ] from Lemma 5.3, which is particularly convenient as we will need to divide
by κt+1 to pass from Ft+1 to Gt+1.

PROOF OF LEMMA 5.6. As stated before, let κ = κt and denote the cluster-
sizes by w1, . . . ,wκ . We account for the change Ft+1(s) − Ft(s) as follows.
Should the clusters Ci and Cj merge in round t + 1, this would contribute exactly
e−(wi+wj )s − e−wis − e−wj s to Ft+1(s) − Ft(s). Thus, E[Ft+1(s) − Ft(s) | Ft ] is
simply the sum of these expressions, weighted by the probabilities that the indi-
vidual pairs merge.

Let us calculate the probability that Ci accepts an incoming request from the
cluster Cj . First let Ri denote the event that Ci accepts an incoming request from
some cluster, which was shown in the proof of Lemma 5.3 to satisfy P(Ri | Ft ) =
1
2(1− (1−wi/2)κ−1). Crucially, the fact that acceptors select an incoming request
to merge with via a uniform law now implies that, given Ri , the identity of the
cluster that Ci merges with is uniform over the remaining κ − 1 clusters by sym-
metry. In particular, the probability that Ci accepts a merge request from Cj equals
P(Ri | Ft )/(κ − 1) and so

E[Ft+1(s) − Ft(s) | Ft ]
(5.6)

= ∑
i 	=j

(
e−(wi+wj )s − e−wis − e−wj s)1

2

(
1 − (1 − wi/2)κ−1) 1

κ − 1
.

The term (1 − wi/2)κ−1 is greater or equal to e−(κ−1)wi/2 − [e(κ − 1)]−1 ≥
e−wiκ/2 −[e(κ − 1)]−1 by Claim 5.5. Since e−(wi+wj )s − e−wis − e−wj s is always
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negative by convexity, this gives

E[Ft+1(s) − Ft(s) | Ft ]
≥ ∑

i 	=j

(
e−(wi+wj )s − e−wis − e−wj s)1

2

(
1 − e−wiκ/2 + 1

e(κ − 1)

)
1

κ − 1
.

Next, observe that

e−(wi+wj )s − e−wis − e−wj s = −1 + (1 − e−wis)(1 − e−wj s) ≥ −1,(5.7)

hence, we can sum the effect of the term 1/(e(κ − 1)) over all κ(κ − 1) indices
i 	= j and get

E[Ft+1(s) − Ft(s) | Ft ]
≥ 1

2(κ − 1)

∑
i 	=j

[(
e−(wi+wj )s − e−wis − e−wj s)(1 − e−wiκ/2)

]

− κ

2e(κ − 1)
.

Note that the last expression has magnitude at most 1/e due to the assumption
κ ≥ 2. Furthermore, each of the κ(κ − 1) summands in the summation over i 	= j

has magnitude at most 1, hence, we may replace the factor 1/(κ − 1) with 1/κ in
front of the summation at a maximal cost of 1

2( 1
κ−1 − 1

κ
)κ(κ − 1) = 1

2 , giving

E[Ft+1(s) − Ft(s) | Ft ]
≥ 1

2κ

∑
i 	=j

[(
e−(wi+wj )s − e−wis − e−wj s)(1 − e−wiκ/2)

] − 1

2
− 1

e
(5.8)

>
1

2κ

∑
i,j

[(
e−(wi+wj )s − e−wis − e−wj s)(1 − e−wiκ/2)

] − 2,

where the last inequality is due to each of the κ diagonal terms i = j having mag-
nitude at most 1.

Since (5.5) addresses Ft+1(κs) rather than Ft+1(s) we now focus on the follow-
ing summation:∑

i,j

(
e−(wi+wj )κs − e−wiκs − e−wjκs)(1 − e−wiκ/2)

= ∑
i,j

(
e−wiκs−wjκs − e−wi(κs+κ/2)−wjκs − e−wiκs

+ e−wi(κs+κ/2) − e−wjκs + e−wjκs−wiκ/2)
= Ft(κs)2 − Ft

(
κs + κ

2

)
Ft(κs) − κFt(κs) + κFt

(
κs + κ

2

)

− κFt(κs) + Ft

(
κ

2

)
Ft(κs).
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Using this in (5.8), noting that the term −Ft(κs) cancels out, we find that

E[Ft+1(κs) | Ft ]
>

1

2κ

[
Ft(κs)2 − Ft

(
κs + κ

2

)
Ft(κs)

+ κFt

(
κs + κ

2

)
+ Ft

(
κ

2

)
Ft(κs)

]
− 2

= κ + Ft(κ/2)

2

[
Ft(κs) + Ft(κ/2)

κ + Ft(κ/2)
· Ft(κs)

κ

+ κ − Ft(κs)

κ + Ft(κ/2)
· Ft(κs + κ/2)

κ

]
− 2

= 1 + Gt(1/2)

2
κ

[
α

α + β
Gt(s) + β

α + β
Gt

(
s + 1

2

)]
− 2,

where α = Gt(s) + Gt(
1
2) and β = 1 − Gt(s), thus establishing (5.5). �

5.3. Quantifying the convexity correction in the recursion for Ft . Examine the
recursion established in Lemma 5.6. In order to derive lower bounds on the Ft ’s,
we recognize the second factor in the right-hand side of (5.5) as a weighted arith-
metic mean of two evaluations of Gt . Recalling that Gt is a convex combination
of negative exponentials, we will now estimate the “convexity correction” between
Gt and its weighted mean. It is precisely this increment which will allow us to
show that Gt rises toward 1 at a nontrivial rate, as the following lemma demon-
strates.

LEMMA 5.7. Suppose after t rounds κt ≥ 2 and let εt = 1 − Gt(
1
2) and κ∗ =

(1 − εt/2)κt . Then

E[Ft+1(κ
∗) | Ft ] ≥ [Gt(1) + ε

13/εt
t ]κ∗ − 2.(5.9)

Indeed, by Lemma 5.3 we recognize that κ∗ is approximately E[κt+1 | Ft ],
hence, postponing for the moment concentration arguments, one sees that equa-
tion (5.9) resembles the form of (5.2). Our first step in proving this lemma will
be to establish a lower bound similar to (5.9) which replaces the ε

1/εt
t term by the

convexity correction between Gt and its weighted mean from (5.5).

CLAIM 5.8. Suppose after t rounds κt ≥ 2 and let εt = 1 − Gt(
1
2) and κ∗ =

(1 − εt/2)κt . Let h(s) be the secant line intersecting Gt(s) at s1 = κ∗/κt and s2 =
s1 + 1

2 . Let θ = α
α+β

s1 + β
α+β

s2 where α = Gt(s1) + Gt(
1
2) and β = 1 − Gt(s1),

and let � = h(θ) − Gt(θ). Then

E[Ft+1(κ
∗) | Ft ] ≥ [Gt(1) + �]κ∗ − 2(5.10)
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and in addition
εt

4
≤ θ − s1 ≤ 1

4
.(5.11)

PROOF. Applying Lemma 5.6 with s = s1 and rewriting its statement in terms
of h, θ,� give

E[Ft+1(κ
∗) | Ft ] > (1 − εt/2)κth(θ) − 2 = h(θ)κ∗ − 2 = [Gt(θ) + �]κ∗ − 2.

Since we established in Claim 5.4 that Gt is decreasing, (5.10) will follow from
showing that θ ≤ 1. Note that θ is a weighted mean between s1 = 1 − εt/2 and
s2 = s1 + 1

2 , and so it is not immediate that θ ≤ 1. To show that this is the case, we
argue as follows.

Recalling the definition of θ , we wish to show that αs1 + β(s1 + 1
2) ≤ α + β

where α = Gt(s1)+Gt(
1
2) and β = 1−Gt(s1). Observe that α+β = 1+Gt(

1
2) =

2 − εt = 2s1 by definition. Therefore, θ ≤ 1 if and only if (α + β)s1 + β/2 ≤ 2s1,
or equivalently

2
(
Gt

(1
2

) − 1
)
s1 + 1 ≤ Gt(s1).

We claim that indeed

2
(
Gt

(1
2

) − 1
)
s + 1 ≤ Gt(s) for any s ≥ 1

2 ,(5.12)

which would, in particular, imply that it holds for s = s1 > 1
2 since s1 = 1 − εt/2

with εt < 1. In order to verify (5.12) observe that its left-hand side is an affine
function of s whereas the right-hand side is convex and that equality holds for
s = 0 [recall that Gt(0) = 1] and s = 1

2 . Thus, the affine left-hand side does not
exceed the convex right-hand side for any s ≥ 1

2 , as required. We now conclude
that θ ≤ 1, establishing (5.10).

It remains to prove (5.11). Since θ is a weighted arithmetic mean of s1 and
s2 = s1 + 1

2 , the upper bound will follow once we show that the weight on s1

exceeds the weight on s2 + 1
2 , that is, when α > β or equivalently

2Gt(s1) + Gt

(1
2

)
> 1.

This indeed holds, as Claim 5.4 established that Gt(s) ≥ e−s and therefore the
left-hand side above is at least 2e−s1 + e−1/2 ≥ 2/e + e−1/2 > 5

4 , where we used
the fact that s1 = 1 − εt/2 ≤ 1.

For the lower bound in (5.11), recall from Claim 5.4 that Gt is decreasing and
Gt(0) = 1, which together with the aforementioned fact that s1 ≥ 1

2 gives

β

α + β
= 1 − Gt(s1)

1 + Gt(1/2)
≥ 1 − Gt(1/2)

2
= εt

2
.

The proof is now concluded by noting that θ − s1 = 1
2 · β

α+β
by definition. �

Next, we will provide a lower bound on the convexity correction in terms of the
difference between two evaluations of Gt .
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CLAIM 5.9. Let s ≤ 1 and let h be the secant line intersecting Gt at s and
s + 1

2 . For any 0 ≤ δ ≤ 1
4 ,

h(s + δ) − Gt(s + δ) ≥ δ2

2

[
Gt

(
1

2

)
− Gt(1)

]2

.

PROOF. Let g denote the secant line intersecting Gt at s and s + 2δ. Since
δ ≤ 1

4 and Gt is a decreasing convex function,

Gt(s + δ) < g(s + δ) ≤ h(s + δ).

It thus suffices to show the following to deduce the statement of the claim:

g(s + δ) − Gt(s + δ) ≥ δ2

2

[
Gt

(
1

2

)
− Gt(1)

]2

,(5.13)

which has a particularly convenient left-hand side due to the fact that g(s + δ) =
1
2 [Gt(s) + Gt(s + 2δ)] by definition. Now let κ = κt and let w1, . . . ,wκ be the
cluster-sizes at the end of round t . We have

1

2
[Gt(s) + Gt(s + 2δ)] − Gt(s + δ)

= 1

2κ

∑
i

[
e−wiκs − 2e−wiκ(s+δ) + e−wiκ(s+2δ)](5.14)

= 1

2κ

∑
i

e−wiκs(1 − e−wiκδ)2.

By Cauchy–Schwarz, the right-hand side of (5.14) satisfies

1

2κ

∑
i

e−wiκs(1 − e−wiκδ)2 ≥ 1

2

[
1

κ

∑
i

e−wiκs/2(1 − e−wiκδ)

]2

(5.15)

= 1

2

[
Gt

(
s

2

)
− Gt

(
s

2
+ δ

)]2

.

Set K = �1/2δ�, noting that K ≤ 1/δ as δ ≤ 1
4 . Since Gt is a decreasing convex

function we have

Gt

(
s

2

)
− Gt

(
s

2
+ δ

)
≥ Gt

(
s

2
+ (j − 1)δ

)
− Gt

(
s

2
+ jδ

)
for any j ≥ 1,

and summing these equations for j = 1, . . . ,K yields

Gt

(
s

2

)
− Gt

(
s

2
+ δ

)
≥ 1

K

[
Gt

(
s

2

)
− Gt

(
s

2
+ Kδ

)]

≥ 1

K

[
Gt

(
s

2

)
− Gt

(
s

2
+ 1

2

)]
,
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which is at least (1/K)[Gt(
1
2) − Gt(1)] once again since s ≤ 1 and Gt is convex

and decreasing. Therefore, since K ≤ 1/δ we can conclude that

Gt

(
s

2

)
− Gt

(
s

2
+ δ

)
≥ δ

[
Gt

(
1

2

)
− Gt(1)

]
,

which together with (5.14), (5.15) now establishes (5.13) and thus the proof is
complete. �

The above claim quantified the convexity correction in terms of Gt(
1
2)−Gt(1),

and next we wish to estimate this quantity in terms of the key parameter εt =
1 − Gt(

1
2), which governs the coalescence rate as was established by Lemma 5.3.

CLAIM 5.10. For any t we have Gt(
1
2)−Gt(1) ≥ ε

5/εt
t , where εt = 1−Gt(

1
2).

PROOF. We first claim that

Gt(s) − Gt(2s) ≤ √
Gt(2s) − Gt(4s) for any s > 0.(5.16)

Indeed, let κ = κt , let w1, . . . ,wκ be the cluster-sizes after time t and define

X = Gt(0) − Gt(s) = 1

κ

∑
i

(1 − e−wiκs),

Y = Gt(s) − Gt(2s) = 1

κ

∑
i

e−κs(1 − e−wiκs),

Z = Gt(2s) − Gt(3s) = 1

κ

∑
i

e−2κs(1 − e−wiκs).

By Cauchy–Schwarz, Y ≤ √
XZ. Moreover, XZ ≤ Z ≤ Gt(2s) − Gt(4s) since

Gt is decreasing and Gt(0) = 1, and combining these inequalities now estab-
lishes (5.16).

Let γ = Gt(
1
2) − Gt(1) and let r ≥ 2. A repeated application of (5.16) reveals

that

Gt(2
−k) − Gt

(
2−(k−1)) ≤ γ 1/2k−1

for k = 1,2, . . . , r,

and summing these equations we find that

Gt(2
−r ) − Gt

(
1

2

)
≤

r∑
k=1

γ 1/2k−1 ≤ rγ 1/2r−1
.

On the other hand, since Gt is 1-Lipschitz we also have Gt(2−r ) ≥ Gt(0)− 2−r =
1 − 2−r .

At this point, recalling that εt = 1 − Gt(
1
2) and combining it with the above

bounds gives

εt − 2−r ≤ Gt(2
−r ) − Gt

(1
2

) ≤ rγ 1/2r−1
.(5.17)
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The above inequality is valid for any integer r ≥ 2 and we now choose r =
�log2(4/3εt )�, or equivalently r is the least integer such that 2−r ≤ 3

4εt . One
should notice that indeed r ≥ 2 since we have εt < 1

2 , which in turn follows from
the fact Gt(s) ≥ e−s (see Claim 5.4) yielding

εt ≤ 1 − e−1/2 < 2
5 .(5.18)

Revisiting (5.17) and using the fact that 2−r ≤ 3
4εt , we find that εt/4 ≤ rγ 1/2r−1

and after rearranging γ ≥ (εt/4r)2r−1
. Moreover, by definition r ≤ log2(8/3εt )

and as one can easily verify that 4 log2(8/3x) < x−11/4 for all 0 < x ≤ 2
5 [which

by (5.18) covers the range of εt ], we have r < 1
4ε

−11/4
t . The choice of r further

implies that 2r−1 < 4/3εt and combining these bounds gives

γ >

(
εt

4r

)4/3εt

> (ε
15/4
t )4/3εt = ε

5/εt
t

as claimed. �

We are now ready to establish equation (5.9), the quantitative bound on the
convexity correction in the weighted mean of (5.5).

PROOF OF LEMMA 5.7. By Claim 5.8, in order to prove (5.9) it suffices to
show that � ≥ ε

13/εt
t with � as defined in the statement of that claim. Using (5.11)

of Claim 5.8 we can write � = h(s1 + δ) − Gt(s1 + δ) where h is the secant
line defined in that claim, s1 = 1 − εt/2 and δ satisfies εt ≤ 4δ ≤ 1. Therefore,
Claim 5.9 implies that � ≥ 1

2(εt/4)2[Gt(
1
2) − Gt(1)]2. Applying Claim 5.10 we

find that

� ≥ 1

2

(
εt

4

)2

(ε
5/εt
t )2 ≥ ε

13/εt
t ,

where we consolidated the constant factors into the exponent using the fact that
x2/32 > x3/x for all 0 < x ≤ 2

5 while bearing in mind that by (5.18) indeed εt < 2
5 .
�

5.4. Proof of Proposition 5.1. Let κ = κt and note that w.l.o.g. we may assume
that κ is sufficiently large by choosing the constant C from the statement of the
proposition appropriately.

Let w1, . . . ,wκ denote the cluster-sizes. As argued before, given Ft one can
realize round t +1 of the process by a κ-dimensional product space, where clusters
behave independently as follows:

(1) For each i, the cluster Ci decides whether to send or accept requests via a
fair coin toss.
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(2) When sending a request Ci selects its recipient cluster randomly (propor-
tionally to the wj ’s).

(3) When accepting requests Ci generates a random real number between 0
and 1 to be used to select the incoming merge-request it will grant (uniformly over
all the incoming requests).

As such, conditioned on Ft the variable κt+1 is clearly 1-Lipschitz w.r.t. the above
product space since changing the value corresponding to the action of one cluster
can affect at most one merge. Thus, by a standard well-known coupling argument
(see, e.g., [3]) the increments of the corresponding Doob martingale are bounded
by 1 (i.e., |Mi+1 − Mi | ≤ 1 where Mi = E[κt+1 | F ′

i ] with F ′
i being the σ -algebra

generated by the actions of clusters 1, . . . , i and Ft ). Hoeffding’s inequality now
gives

P
(∣∣κt+1 − E[κt+1 | Ft ]

∣∣ > a | Ft

) ≤ 2 exp(−a2/2κ) for any a > 0.

Letting κ∗ = (1 + εt/2)κ we recall from Lemma 5.3 that |E[κt+1 | Ft ] − κ∗| ≤ 1
4

and obtain that

P(|κt+1 − κ∗| > κ2/3 | Ft ) ≤ 2 exp
(−1

2

(
κ2/3 − 1

4

)2
/κ

)
= 2 exp

(−1
2κ1/3 + O(κ−1/3)

)
(5.19)

< κ−100,

where the last inequality holds for any sufficiently large κ , thus establishing (5.1).
To obtain (5.2), recall from (5.7) that −1 ≤ e−(wi+wj )s − e−wis − e−wj s ≤ 0,

implying that the random variable Ft+1(κ
∗) is 1-Lipschitz w.r.t. the aforemen-

tioned κ-dimensional product space. Furthermore, E[Ft+1(κ
∗) | Ft ] ≥ [Gt(1) +

ε
13/εt
t ]κ∗ − 2 due to Lemma 5.7, and by the same argument as before we conclude

from Hoeffding’s inequality that

P
(
Ft+1(κ

∗) < [Gt(1) + ε
13/εt
t ]κ∗ − κ2/3 | Ft

)
≤ exp

(−1
2κ1/3 + O(κ−1/3)

)
< κ−100.

Rewriting this inequality in terms of Gt+1, with probability at least 1 − κ−100 we
have

Gt+1

(
κ∗

κt+1

)
≥ [Gt(1) + ε

13/εt
t ] κ∗

κt+1
− κ2/3

κt+1

≥ Gt(1) + ε
13/εt
t − 2|κt+1 − κ∗| + κ2/3

κt+1
,

where we used that [Gt(1) + ε
13/εt
t ](κ∗ − κt+1) ≥ −(Gt(0) + 1)|κt+1 − κ∗| =

−2|κt+1 − κ∗| due to Gt(s) being decreasing in s. Moreover, since Gt+1 is 1-
Lipschitz as was shown in Claim 5.4, in this event we have

Gt+1(1) ≥ Gt+1

(
κ∗

κt+1

)
−

∣∣∣∣1 − κ∗

κt+1

∣∣∣∣ ≥ Gt(1) + ε
13/εt
t − 3|κt+1 − κ∗| + κ2/3

κt+1
.
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Finally, recalling from (5.19) that |κt+1 − κ∗| ≤ κ2/3 except with a probability of
at most κ−100, we can conclude that with probability at least 1 − 2κ−100

Gt+1(1) ≥ Gt+1

(
κ∗

κt+1

)
−

∣∣∣∣1 − κ∗

κt+1

∣∣∣∣ ≥ Gt(1) + ε
13/εt
t − 4

κ2/3

κt+1

≥ Gt(1) + ε
13/εt
t − 8κ−1/3,

where the last inequality used the fact that κt+1 ≥ κ/2 by definition of the coales-
cence process (since the merging pairs of clusters are always pairwise-disjoint).
This yields (5.2) and therefore completes the proof of the proposition.
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