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Abstract

The following distributed coalescence protocol was intro-

duced by Dahlia Malkhi in 2006 motivated by applications

in social networking. Initially there are n agents wishing to

coalesce into one cluster via a decentralized stochastic pro-

cess, where each round is as follows: Every cluster flips a fair

coin to dictate whether it is to issue or accept requests in

this round. Issuing a request amounts to contacting a cluster

randomly chosen proportionally to its size. A cluster accept-

ing requests is to select an incoming one uniformly (if there

are such) and merge with that cluster. Empirical results by

Fernandess and Malkhi suggested the protocol concludes in

O(logn) rounds with high probability, whereas numerical es-

timates by Oded Schramm, based on an ingenious analytic

approximation, suggested that the coalescence time should

be super-logarithmic.

Our contribution is a rigorous study of the stochastic co-

alescence process with two consequences. First, we confirm

that the above process indeed requires super-logarithmic

time w.h.p., where the inefficient rounds are due to over-

sized clusters that occasionally develop. Second, we rem-

edy this by showing that a simple modification produces

an essentially optimal distributed protocol: If clusters favor

their smallest incoming merge request then the process does

terminate in O(logn) rounds w.h.p., and simulations show

that the new protocol readily outperforms the original one.

Our upper bound hinges on a potential function involving

the logarithm of the number of clusters and the cluster-

susceptibility, carefully chosen to form a supermartingale.

The analysis of the lower bound builds upon the novel ap-

proach of Schramm which may find additional applications:

Rather than seeking a single parameter that controls the sys-

tem behavior, instead one approximates the system by the

Laplace transform of the entire cluster-size distribution.

1 Introduction

The following stochastic distributed coalescence proto-
col was proposed by Dahlia Malkhi in 2006, motivated
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by applications in social networking and the reliable for-
mation of peer-to-peer networks (see [10] for more on
these applications). The objective is to coalesce n par-
ticipating agents into a single hierarchal cluster reliably
and efficiently. To do so without relying on a central-
ized authority, the protocol first identifies each agent as
a cluster (a singleton), and then proceeds in rounds as
follows:

(i) Each cluster flips a fair coin to determine whether
it will be issuing a merge-request or accepting
requests in the upcoming round.

(ii) Issuing a request amounts to selecting another
cluster randomly proportionally to its size.

(iii) Accepting requests amounts to choosing an incom-
ing request (if there are any) uniformly at random
and proceeding to merge with that cluster.

In practice, each cluster is in fact a layered tree whose
root is entrusted with running the protocol, e.g. each
root decides whether to issue/accept requests in a given
round etc. When attempting to merge with another
cluster, the root of cluster Ci simply chooses a vertex v
uniformly out of [n], which then propagates the request
to its root. This therefore corresponds to choosing
the cluster Cj proportionally to |Cj |. This part of the
protocol is well-justified by the fact that agents within
a cluster typically have no information on the structure
of other clusters in the system.

A second feature of the protocol is the symmetry
between the roles of issuing/accepting requests played
by the clusters. Clearly, every protocol enjoying this
feature would have (roughly) at most half of its clusters
become acceptors in any given round, and as such could
terminate within O(log n) rounds. Furthermore, on an
intuitive level, as long as all clusters are of roughly
the same size (as is the case initially), there are few
“collisions” (multiple clusters issuing a request to the
same cluster) each round and hence the effect of a
round is similar to that of merging clusters according
to a random perfect matching. As such, one might
expect that the protocol should conclude with a roughly
balanced binary tree in logarithmic time.

Indeed, empirical evidence by Fernandess and
Malkhi [11] showed that this protocol seems highly ef-
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ficient, typically taking a logarithmic number of rounds
to coalesce. However, rigorous performance guarantees
for the protocol were not available.

While there are numerous examples of stochastic
processes that have been successfully analyzed by means
of identifying a single tractable parameter that controls
their behavior, here it appears that the entire distribu-
tion of the cluster-sizes plays an essential role in the
behavior of the system. Demonstrating this is the fol-
lowing example: Suppose that the cluster C1 has size
n − o(

√
n) while all others are singletons. In this case

it is easy to see that with high probability all of the
merge-requests will be issued to C1, who will accept at
most one of them (we say an event holds with high prob-
ability, or w.h.p. for brevity, if its probability tends to
1 as n → ∞). Therefore, starting from this configu-
ration, coalescence will take at least n1/2−o(1) rounds
w.h.p., a polynomial slowdown. Of course, this scenario
is extremely unlikely to arise when starting from n in-
dividual agents, yet possibly other mildly unbalanced
configurations are likely to occur and slow the process
down.

In 2007, Oded Schramm proposed a novel approach
to the problem, approximately reducing it to an analytic
problem of determining the asymptotics of a recursively
defined family of real functions. Via this approxima-
tion framework Schramm then gave numerical estimates
suggesting that the running time of the stochastic co-
alescence protocol is w.h.p. super-logarithmic. Unfor-
tunately, the analytical problem itself seemed highly
nontrivial and overall no bounds for the process were
known.

1.1 New results In this work we study the stochas-
tic coalescence process with two main consequences.
First, we provide a rigorous lower bound confirming that
this process w.h.p. requires a super-logarithmic number
of rounds to terminate. Second, we identify the vul-
nerability in the protocol, namely the choice of which
merge-request a cluster should approve: While the orig-
inal choice seems promising in order to maintain the
balance between clusters, it turns out that typical devi-
ations in cluster-sizes are likely to be amplified by this
rule and lead to irreparably unbalanced configurations.
On the other hand, we show that a simple modifica-
tion of this rule to favor the smallest incoming request
is already enough to guarantee coalescence in O(log n)
rounds w.h.p. (Here and in what follows we let f . g de-
note that f = O(g) while f � g is short for f . g . f .)

Theorem 1.1. The uniform coalescence process U co-
alesces in τc(U) & log n · log logn

log log logn rounds w.h.p. Con-
sider a modified size-biased process S where every ac-
cepting cluster Ci has the rule:

• Ignore requests from clusters of size larger than |Ci|.

• Among other requests (if any) select one issued by
a cluster Cj of smallest size.

Then the coalescence time of the size-biased process
satisfies τc(S) � log n w.h.p.

Observe that the new protocol is easy to implement
efficiently in practice as each root can keep track of the
size of its cluster and can thus include it as part of the
merge-request.

1.2 Empirical results Our simulations show that
the running time of the size-biased process is approx-
imately 5 log2 n. Moreover, they further demonstrate
that the new size-biased process empirically performs
substantially better than the uniform process even for
fairly small values of n, i.e. the improvement appears
not only asymptotically in the limit but already for or-
dinary input sizes. These results are summarized in Fig-
ure 1, where the plot on the left clearly shows how the
uniform process diverges from the linear (in logarithmic
scale) trend corresponding to the runtime of the size-
biased process. The rightmost plot identifies the crux
of the matter: the uniform process rapidly produces a
highly skewed cluster-size distribution, which slows it
down considerably.

1.3 Related work There is extensive literature on
stochastic coalescence processes whose various flavors fit
the following scheme: The clusters act via a continuous-
time process where the coalescence rate of two clusters
with given masses x, y (which can be either discrete or
continuous) is dictated up to re-scaling by a rate ker-
nel K. A notable example of this is Kingman’s coales-
cent [18], which corresponds to the kernel K(x, y) = 1
and has been intensively studied in mathematical pop-
ulation genetics; see e.g. [7] for more on Kingman’s co-
alescent and its applications in genetics. Other rate
kernels that have been thoroughly studied include the
additive coalescent K(x, y) = x + y which corresponds
to Aldous’s continuum random tree [1], and the multi-
plicative coalescent K(x, y) = xy that corresponds to
Erdős-Rényi random graphs [9] (see the books [4, 17]).
For further information on these as well as other coales-
cence processes, whose applications range from physics
to chemistry to biology, we refer the reader to the ex-
cellent survey of Aldous [2].

A major difference between the classical stochas-
tic coalescence processes mentioned above and those
studied in this work is the synchronous nature of the
latter ones: Instead of individual merges whose occur-
rences are governed by independent exponentials, here
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Figure 1: The top plot compares the running times for the two
processes. Statistics are derived from 100 independent runs of

each process, for each n ∈ {1024, 2048, . . . , 220}. The bottom

plot tracks the ratio between the maximum and average cluster-
sizes, through a single run of each process, for n = 106. There,

the uniform process took 128 rounds, while the size-biased process

finished in 96.

the process is comprised of rounds where all clusters
act simultaneously and the outcome of a round (mul-
tiple disjoint merges) is a function of these combined
actions. This framework introduces delicate dependen-
cies between the clusters, and rather than having the
coalescence rate of two clusters be given by the rate
kernel K as a function of their masses, here it is a func-
tion of the entire cluster distribution. For instance, sup-
pose nearly all of the mass is in one cluster Ci (which
thus attracts almost all merge requests); its coalescence
rate with a given cluster Cj in the uniform coalescence
process U clearly depends on the total number of clus-
ters at that given moment, and similarly in the size-
biased coalescence process S it depends on the sizes of
all other clusters, viewed as competing with Cj over this
merge. In face of these mentioned dependencies, the
task of analyzing the evolution of the clusters along the
high-dimensional stochastic processes U and S becomes
highly nontrivial.

In terms of applications and related work in Com-
puter Science, the processes studied here have similar
flavor to those which arose in the 1980’s, most notably
the Random Mate algorithm introduced by Reif, and
used by Gazit [15] for parallel graph components and by
Miller and Reif [20] for parallel tree contraction. How-
ever, as opposed to the setting of those algorithms, a
key difference here is the fact that as the process evolves
through time each cluster is oblivious to the distribution
of its peers at any given round (including the total num-
ber of clusters for that matter). Therefore for instance
it is impossible for a cluster to sample from the uni-
form distribution over the other clusters when issuing
its merge request.

For another related line of works in Computer
Science, recall that the coalescence processes studied
in this work organize n agents in a hierarchic tree,
where each merged cluster reports to its acceptor clus-
ter. This is closely related to the rich and inten-
sively studied topic of Randomized Leader Elections
(see e.g. [6, 12, 22, 23, 27]), where a computer network
comprised of n processors attempts to single out a
leader (in charge of communication, etc.) by means of
a distributed randomized process generating the hierar-
chic tree. Finally, studying the dynamics of randomly
merging sets is also fundamental to understanding the
average-case performance of disjoint-set data structures
(see e.g. the works of Bollobás and Simon [5], Knuth
and Schönhage [19] and Yao [26]). These structures,
which are of fundamental importance in computer sci-
ence, store collections of disjoint sets, and support two
operations: (i) taking the union of a pair of sets, and
(ii) determining which set a particular element is in. See
e.g. [14] for a survey of these data structures. The pro-
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cesses studied here precisely consider the evolution of
a collection of disjoint sets under random merge opera-
tions, and it is plausible that the tools used here could
contribute to advances in that area.

1.4 Main techniques As we mentioned above, the
main obstacle in the coalescence processes studied here
is that since requests go to other clusters with prob-
ability proportional to their size, the largest clusters
can create a bottleneck, absorbing all requests yet each
granting only one per round. An intuitive approach for
analyzing the size-biased process S would be to track a
statistic that would warn against this scenario, with the
most obvious candidate being the size of the largest clus-
ter. However, simulations indicate that this alone will
be insufficient as the largest cluster does in fact grow
out of proportion in typical runs of the process. Nev-
ertheless, the distribution of large clusters turns out to
be sparse. The key idea is then to track a smoother pa-
rameter involving the susceptibility, which is essentially
the second moment of the cluster-size distribution.

To simplify notation normalize the cluster-sizes to
sum to 1 so that the initial distribution consists of
n clusters of size 1

n each. With this normalization,
the susceptibility χt is defined as the sum of squares
of cluster-sizes after the t-th round. (We note in
passing that this parameter has played a central role
in the study of the phase-transition in Percolation and
Random Graphs, see e.g. [16, 25].) The proof that the
size-biased protocol is optimal hinges on a carefully
chosen potential function Φt = χtκt + C log κt, where
κt denotes the number of clusters after the t-th round
and C is an absolute constant chosen to turn Φt into
a supermartingale. We will control the evolution of Φt
and prove our upper bound on the running time of the
size-biased process.

The analysis of the uniform process U is delicate
and relies on rigorizing and analyzing the novel frame-
work of Schramm [24] for approximating the problem
by an analytic one. We believe this technique is of in-
dependent interest and may find additional applications
in analyzing high-dimensional stochastic processes. In-
stead of seeking a single parameter to summarize the
system behavior, one instead measures the system via a
Laplace transform of the entire cluster-size distribution:

Definition 1. For any integer t ≥ 0 let Ft be the σ-
algebra generated by the first t rounds of the process.
Conditioned on Ft, define the functions Ft(s) and Gt(s)
on the domain R as follows. Let κ be the number of
clusters and let w1, . . . , wκ be the normalized cluster-
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Figure 2: Numerical estimations by Oded Schramm for the func-

tions Gt(s) from his analytic approximation of the uniform coa-

lescence process. The top plot features Gt(s) for t = {0, 2, . . . , 40}
and s ∈ [0, 1] and demonstrates how these increase with t. The

bottom plot focuses on Gt(
1
2

) and suggests that Gt(
1
2

) → 1 and

that in turn the coalescence rate should be super-logarithmic.

sizes after t rounds. Set

(1.1) Ft(s) =

κ∑
i=1

exp(−wi s) , Gt(s) =
1

κ
Ft(κ s) .

As we will further explain in Section 2, the Laplace
transform Ft simultaneously captures all the moments
of the cluster-size distribution, in a manner analogous to
the moment generating function of a random variable.
This form is particularly useful in our application as
it turns out that the specific evaluation Gt

(
1
2

)
governs

the expected coalescence rate. Furthermore, it turns
out that it is possible to estimate values of Ft (and
Gt) recursively. Although the resulting recursion is
nonstandard and highly complex, a somewhat intricate
analysis eventually produces a lower bound for the
uniform process.

1.5 Organization In Section 2, we will describe
Schramm’s analytic approach for approximating the
uniform process U . Section 3 outlines the argu-
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ments showing that the size-biased process S satisfies
E[τc(S)] = O(log n). The fact that τc(S) = O(log n)
w.h.p. requires additional ideas and a delicate mar-
tingale analysis and will appear in the journal ver-
sion of this paper. The final section, Section 4, builds
upon Schramm’s aforementioned framework to produce
a super-logarithmic lower bound for τc(U).

2 Oded Schramm’s analytic approximation
framework for the uniform process

In this section we describe Schramm’s analytic approach
as it was presented in [24] for analyzing the uniform co-
alescence process U , as well as the numerical evidence
that Schramm obtained based on this approach suggest-
ing that τc(U) is super-logarithmic. Throughout this
section we write approximations loosely as they were
sketched by Schramm and postpone any arguments on
their validity (including concentration of random vari-
ables, etc.) to Section 4, where we will turn elements
from this approach into a rigorous lower bound on τc(U).

Let Ft denote the σ-algebra generated by the first t
rounds of the coalescence process U . The starting point
of Schramm’s approach was to examine the following
function conditioned on Ft:

Ft(s) =

κt∑
i=1

exp(−wi s) ,

where κt is the number of clusters after t rounds and
w1, . . . , wκt

denote the normalized cluster-sizes at that
time (see Definition 1). The benefit that one could gain
from understanding the behavior of Ft(s) is obvious as
Ft(0) recovers the number of clusters at time t.

More interesting is the following observation of
Schramm regarding the role that Ft(κt/2) plays in
the evolution of the clusters. Conditioned on Ft, the
probability that the cluster Ci receives a merge request
from another cluster Cj is 1

2wi (the factor 1
2 accounts for

the choice of Cj to issue rather than accept requests).
Thus, the probability that Ci will receive any incoming
request in round t + 1 and independently decide to be
an acceptor is

1

2

[
1− (1− wi/2)κt−1

]
≈ 1

2
[1− exp(−wiκt/2)] .

On this event, Ci will account for one merge at time
t+ 1, and summing this over all clusters yields

E[κt+1 | Ft] ≈ κt −
1

2

κt∑
i=1

[1− exp(−wiκt/2)]

=
1

2
[κt + Ft(κt/2)] ,

or equivalently, if we re-scale Ft(s) into Gt(s) =
(1/κt)Ft(κts) as in Eq. (1.1),

(2.2) E [κt+1/κt | Ft] ≈
1 +Gt(

1
2 )

2
.

In order to have τc(U) � log n the number of clusters
would need to typically drop by at least a constant
factor at each round. This would require the ratio
in (2.2) to be bounded away from 1, or equivalently,
Gt(

1
2 ) should be bounded away from 1.
Unfortunately, the evolution of the sequence

Gt(
1
2 ) = (1/κt)Ft(κt/2) appears to be quite complex

and there does not seem to be a simple way to deter-
mine its limiting behavior. Nevertheless, Schramm was
able to write down an approximate recursion for the ex-
pected value of Ft+1 in terms of multiple evaluations of
Ft by observing the following: On the above event that
Ci chooses to accept the merge request of some other
cluster Cj , by definition of the process U the identity
of the cluster Cj is uniformly distributed over all κt − 1
clusters other than Ci. Hence,

E
[
Ft+1(s)− Ft(s) | Ft

]
≈
∑
i

1

2

(
1− e−wiκt/2

) 1

κt
×

∑
j 6=i

(
e−(wi+wj)s − e−wis − e−wjs

)
.

Ignoring the fact that the last sum in the approximation
skips the diagonal terms j = i, one arrives at a
summation over all 1 ≤ i, j ≤ κt of exponents similar to
those in the definition of Ft with an argument of either
s, κt/2, or s+ κt/2, which after rearranging gives

E[Ft+1(s) | Ft]

≈ 1

2
Ft(s+ κt/2)

+
1

2κt
Ft(s)

[
Ft(s) + Ft(κt/2)− Ft(s+ κt/2)

]
.

To turn the above into an expression for Gt+1(s) one
needs to evaluate Ft+1(κt+1s) rather than Ft+1(κts), to
which end the approximation κt+1 ≈ 1

2 [1 + Gt(
1
2 )]κt

can be used based on (2.2). Additionally, for the
starting point of the recursion, note that the initial
configuration of wi = 1/κ0 for all 1 ≤ i ≤ κ0 has
G0(s) = exp(−s). Altogether, Schramm obtained
the following deterministic analytic recurrence, whose
behavior should (approximately) dictate the coalescence

545 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



rate:

g0(s) = exp(−s) ,

gt+1(s) =
1

2α

[
gt(αs)

2 − gt(αs+ 1
2 )gt(αs)

+gt(αs+ 1
2 ) + gt(

1
2 )gt(αs)

]
,

where α = 1
2 [1 + gt(

1
2 )] .

In light of this, aside from the task of assessing how
good of an approximation the above defined functions
gt provide for the random variablesGt along the uniform
coalescence process U , the other key question is whether
the sequence gt(

1
2 ) converges to 1 as t → ∞, and if so,

at what rate.
For the latter, as the complicated definition of gt+1

attests, analyzing the recursion of gt seems highly non-
trivial. Moreover, a naive evaluation of gt(

1
2 ) involves

exponentially many terms, making numerical simula-
tions already challenging. The computer-assisted nu-
merical estimates performed by Schramm for the above
recursion, shown in Figure 2, seemed to suggest that in-
deed gt(

1
2 ) → 1 (albeit very slowly), which should lead

to a super-logarithmic coalescence time for U . However,
no rigorous results were known for the limit of gt(

1
2 ) or

its stochastic counterpart Gt(
1
2 ).

In order to turn Schramm’s argument into a rigor-
ous lower bound on τc(U), we will need to move our at-
tention away from the sought value of Gt(

1
2 ) and focus

instead on Gt(1). By manipulating Schramm’s recur-
sion for Gt and combining it with additional analytic ar-
guments and appropriate concentration inequalities, we
show that as long as κt is large enough and Gt(

1
2 ) < 1−δ

for some fixed δ > 0, then typically Gt+1(1) > Gt(1)+ ε
for some ε(δ) > 0. Since by definition 0 ≤ Gt(1) ≤ 1
this can be used to show that ultimately Gt(

1
2 ) → 1

w.h.p., and a careful quantitative version of this argu-
ment produces the rigorous lower bound on τc(U) stated
in Theorem 1.1.

3 Expected running time of the size-biased
process

The goal of this section is to prove that the expected
time for the size-biased process to complete has loga-
rithmic order, as stated in Proposition 3.1. Following a
few simple observations on the process we will prove this
proposition using two key lemmas, Lemmas 3.2 and 3.3,
whose proofs will appear in the journal version of this
paper. There, we also extend the proof of this propo-
sition using some additional ideas to establish that the
coalescence time is bounded by O(log n) w.h.p.

Proposition 3.1. Let τc = τc(S) denote the coales-
cence time of the size-biased process S. Then there
exists an absolute constant C > 0 such that E1[τc] ≤

C log n, where E1[·] denotes expectation w.r.t. an initial
cluster distribution comprised of n singletons.

Throughout this section we refer only to the size-
biased process and use the following notation. Define
the filtration Ft to be the σ-algebra generated by the
process up to and including the t-th round. Let κt de-
note the number of clusters after the conclusion of round
t, noting that with these definitions we are interested in
bounding the expected value of the stopping time

(3.3) τc = min{t : κt = 1} .

As mentioned in the introduction, we normalize the
cluster-sizes so that they sum to 1. Finally, the
susceptibility χt denotes the sum of squares of the
cluster-sizes at the end of round t.

Observe that by Cauchy-Schwarz, if w1, . . . , wκt are
the cluster-sizes at the end of round t then we always
have

(3.4) χt κt ≥
( κt∑
i=1

wi

)2

= 1 ,

with equality iff all clusters have the same size. In-
deed, the susceptibility χt measures the variance of the
cluster-size distribution. When χt is smaller (closer
to κ−1t ), the distribution is more uniform. We further
claim that

(3.5) χt+1 ≤ 2χt for all t .

To see this, note that if a cluster of size a merges with
a cluster of size b the susceptibility increases by exactly
(a+b)2−(a2+b2) = 2ab ≤ a2+b2. Since each round only
involves merges between disjoint pairs of clusters, this
immediately implies that the total additive increase in
susceptibility is bounded by the current sum of squares
of the cluster sizes, i.e., the current susceptibility χt.

Before commencing with the proof of Proposi-
tion 3.1, we present a trivial linear bound for the ex-
pected running time of the coalescence process, which
will later serve as the final step in our proof. Here and
in what follows, Pw and Ew denote probability and ex-
pectation given the initial cluster distribution w. While
the estimate featured here appears to be quite crude
when w is uniform, recall that in general τc can in fact
be linear in the initial number of clusters w.h.p., e.g.
when w is comprised of one cluster of mass 1 − 1/

√
n

and
√
n other clusters of mass 1/n each.

Lemma 3.1. Starting from κ clusters with an arbitrary
cluster distribution w = (w1, . . . , wκ) we have Ew[τc] ≤
8κ. Furthermore, Pw(τc > 16κ) ≤ e−κ/4.
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Proof. Consider an arbitrary round in which at least
2 clusters still remain. We claim that the probability
that there is at least one merge in this round is at least
1
8 . Indeed, let C1 be a cluster of minimal size: The
probability that it decides to send a request is 1

2 , and
since there are at least two clusters and C1 is the smallest
one, the probability that this request goes to some Cj
with j 6= 1 is at least 1

2 . Finally, the probability that Cj
is accepting requests is again 1

2 . Conditioned on these
events, Cj will definitely accept some request (possibly
not the one from C1 as another cluster of the same size
as C1 may have sent it a request) leading to at least one
merge, as claimed.

The process terminates when the total cumulative
number of merges reaches κ− 1. Therefore, the time of
completion is stochastically dominated by the sum of κ−
1 geometric random variables with success probability
1
8 , and in particular Ew[τc] ≤ 8(κ− 1).

By the same reasoning, the total number of merges
that occurred in the first t rounds clearly stochastically
dominates a binomial variable Bin(t, 18 ) as long as t ≤
τc. Therefore,

Pw(τc > 16κ) ≤ P
(
Bin(16κ, 18 ) ≤ κ− 1

)
≤ e−κ/4 ,

where the last inequality used the well-known Chernoff
bounds (see e.g. [17, Theorem 2.1]). �

3.1 Proof of Proposition 3.1 via two key lem-
mas We next present the two main lemmas on which
the proof of the proposition hinges. The key idea is
to design a potential function comprised of two parts
Φ1,Φ2 while identifying a certain event At such that the
following holds: E[Φ1(t + 1) − Φ1(t) | Ft , At] < c1 < 0
and E[Φ2(t + 1) − Φ2(t) | Ft] < c2 where c1, c2 are ab-
solute constants, and a similar statement holds condi-
tioned on Act when reversing the roles of Φ1 and Φ2. At
this point we will establish that an appropriate linear
combination of Φ1,Φ2 is a supermartingale, and the re-
quired bound on τc will follow from Optional Stopping.
Note that throughout the proof we make no attempt to
optimize the absolute constants involved. The event At
of interest is defined as follows:

Definition 2. Let At be the event that the following
two properties hold after the t-th round:

(i) At least κt/2 clusters have size at most 1/(600κt).

(ii) The cluster-size distribution satisfies the inequality∑
i wi1{wi<41/κt} < 4 · 10−5.

The intuition behind this definition is that Property (2)
boosts the number of tiny clusters, thereby severely
retarding the growth of the largest clusters, which will

tend to see incoming requests from these tiny clusters.
Property (2) ensures that most of the mass of the
cluster-size distribution is on relatively large clusters,
of size at least 41 times the average.

Examining the event At will aid in tracking the
variable χt κt, the normalized susceptibility (recall
from (3.4) that this quantity is always at least 1 and
it equals 1 whenever all clusters are of the same size).
The next lemma, whose proof appears in the journal
version of this paper, estimates the expected change in
this quantity and most notably shows that it is at most
− 1

200 if we condition on At.

Lemma 3.2. Let Φ1(t) = χt κt and suppose that at the
end of the t-th round one has κt ≥ 2. Then

E[Φ1(t+ 1)− Φ1(t) | Ft] ≤ 5(3.6)

and furthermore

E
[
Φ1(t+ 1)− Φ1(t) | Ft , At , χt < 3 · 10−7

]
≤ − 1

200 .

(3.7)

Fortunately, when At does not hold the behavior in the
next round can still be advantageous in the sense that in
this case the number of clusters tends to fall by at least
a constant fraction. This is established by the following
lemma, whose proof is postponed to the journal version
of this paper.

Lemma 3.3. Let Φ2(t) = log κt and suppose that after
the t-th round one has κt ≥ 2. Then

(3.8) E [Φ2(t+ 1)− Φ2(t) | Ft , Act ] < −2 · 10−7 .

We are now in a position to derive Proposition 3.1
from the above two lemmas.

Proof of Proposition 3.1. Define the stopping time τ to
be

τ = min
{
i : χt ≥ 3 · 10−7

}
.

Observe that the susceptibility is initially 1/n, its value
is 1 once the process arrives at a single cluster (i.e. at
time τc) and until that point it is nondecreasing, hence
Eτ ≤ Eτc < ∞ by Lemma 3.1. Further define the
random variable

Zt = χtκt + 3 · 107 log κt +
t

200
.

We claim that (Zt∧τ ) is a supermartingale. Indeed,
consider E[Zt+1 | Ft , τ > t] and note that the fact that
τ > t implies in particular that κt ≥ 2 since in that case
χt < 3 · 10−7 < 1.

• If At holds then by (3.7) the conditional expected
change in χtκt is below − 1

200 , while log κt can only
decrease (as κt is non-increasing), hence E[Zt+1 |
Ft , At , τ > t] ≤ Zt.
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• If At does not hold then by (3.6) the conditional
expected change in χtκt is at most +5 whereas
the conditional expected change in log κt is below
−2 · 10−7 due to (3.8). By the scaling in the
definition of Zt these add up to give E[Zt+1 |
Ft , Act , τ > t] ≤ Zt − 199

200 .

Altogether, (Zt∧τ ) is indeed a supermartingale. As
its increments are bounded and the stopping time τ is
integrable we can apply the Optional Stopping Theorem
(see e.g. [8, Chapter 5]) and get

(3.9) EZτ ≤ Z0 = χ0κ0 + 3 · 107 log κ0 = O(log n) .

At the same time, by definition of τ we have χτ ≥ 3·10−7

and so
(3.10)

Zτ = χτκτ + 3 · 107 log κτ +
τ

200
≥ 3 · 10−7 (κτ + τ/8) .

Taking expectation in (3.10) and combining it with (3.9)
we find that

E [τ + 8κτ ] ≤ O(log n) .

Finally, conditioned on the cluster distribution at time
τ we know by Lemma 3.1 that the expected number of
additional rounds it takes the process to conclude is at
most 8κτ , thus E[τc] ≤ E[τ+8κτ ]. We can now conclude
that E[τc] = O(log n), as required. �

4 Super-logarithmic lower bound for the
uniform process

In this section we use the analytic approximation frame-
work introduced by Schramm to prove the super-
logarithmic lower bound stated in Theorem 1.1 for
the coalescence time of the uniform process. Re-
call that a key element in this framework is the nor-
malized Laplace transform of the cluster-size distribu-
tion, namely Gt(s) = (1/κt)Ft(κts) where Ft(s) =∑κt

i=1 e
−wis (see Definition 1). The following proposi-

tion, whose proof entails most of the technical difficul-
ties in our analysis of the uniform process, demonstrates
the effect of Gt(

1
2 ) and Gt(1) on the coalescence rate.

Proposition 4.1. Let εt = 1 −Gt( 1
2 ) and ζt = Gt(1).

There exists an absolute constant C > 0 such that,
conditioned on Ft, with probability at least 1 − Cκ−100t

we have ∣∣κt+1 − (1− εt/2)κt
∣∣ ≤ κ2/3t ,(4.11)

ζt+1 ≥ ζt + ε
13/εt
t − 8κ

−1/3
t .(4.12)

We postpone the proof of this proposition to the journal
version in favor of showing how the relations that

it establishes between κt, Gt(1), Gt(
1
2 ) can be used to

derive the desired lower bound on τc. We claim that as
long as κt, Gt(

1
2 ), Gt(1) satisfy Eq. (4.11),(4.12) and t =

O
(

log n · log log logn
log logn

)
then κt ≥ n3/4; this deterministic

statement is given by the following lemma:

Lemma 4.1. Set T = 1
75 log n · log logn

log log logn for a suffi-
ciently large n and let κ0, . . . , κT be a sequence of in-
tegers in {1, . . . , n} with κ0 = n. Further let εt and ζt
for t = 0, . . . , T be two sequences of reals in [0, 1] and
suppose that for all t < T the three sequences satisfy
inequalities (4.11) and (4.12). Then κt > n3/4 for all
t ≤ T .

Observe that the desired lower bound on the coa-
lescence time of the uniform process U is an immedi-
ate corollary of Proposition 4.1 and Lemma 4.1. In-
deed, condition on the first t rounds where 0 ≤ t <
T = 1

75 log n · log logn
log log logn and assume κt > n3/4. Propo-

sition 4.1 implies that Eqs. (4.11), (4.12) hold except
with probability O(κ−100t ) = o(n−1). On this event
Lemma 4.1 yields κt+1 > n3/4, extending our assump-
tion to the next round. Accumulating these probabil-
ities for all t < T now shows that P(κT > n3/4) =
1− o(T/n) and in particular τc > T w.h.p., as required.

Proof of lemma. The proof proceeds by induction:
Assuming that κi > n3/4 for all i ≤ t < T we wish
to deduce that κt+1 > n3/4.

Repeatedly applying Eq. (4.12) and using the in-
duction hypothesis we find that

ζt+1 ≥ ζ0 +

t∑
i=0

(
ε
13/εi
i − 8κ

−1/3
i

)
(4.13)

>

t∑
i=0

(
ε
13/εi
i

)
− 8(t+ 1)

(
n3/4

)−1/3
(4.14)

=

t∑
i=0

(
ε
13/εi
i

)
− n− 1

4+o(1)(4.15)

since t ≤ T = no(1). Following this, we claim that the
set I =

{
0 ≤ i ≤ t : εi ≥ 15 log log logn

log logn

}
has size at most

(log n)
9
10 . Indeed, as x1/x is monotone increasing for all

x ≤ e, every such i ∈ I has

ε
13/εi
i ≥

(
15

log log log n

log log n

) 13
15

log log n
log log log n

= (log n)−
13
15+o(1)

> (log n)−
9
10 ,

where the last inequality holds for large n. Hence, if we
had |I| > 2(log n)9/10 then it would follow from (4.14)
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that ζt+1 > 2 − o(1), contradicting the assumption of
the lemma for large enough n.

Moreover, by the assumption that εi ∈ [0, 1] we have
1
2 ≤ (1−εi/2) ≤ 1 for all i. Together with the facts that

κi+1 ≥ (1−εi/2)κi−κ2/3i for all i ≤ t due to (4.11) while
κi ≤ n for all i we now get

κt+1 ≥ κ0
t∏
i=0

(1− εi/2)−
t∑
i=0

κ
2/3
i

≥
(

1− 1

2
· 15 log log log n

log log n

)t
2−|I| n− (t+ 1)n2/3

≥ e−15
log log log n

log log n T 2−|I| n− Tn2/3 ,

where the last inequality used the fact that t < T as well
as the inequality 1− x/2 > e−x, valid for all 0 < x < 1.
Now, 2−|I| = n−o(1) since |I| ≤ 2(log n)9/10 and by the
definition of T we obtain that

κt+1 ≥ e−
1
5 lognn1−o(1) − n 2

3+o(1) = n
4
5−o(1) > n3/4

for sufficiently large n, as claimed. This concludes the
proof. �
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