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Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-
colourable if, for every partition of V (G) into disjoint sets V1 ∪ · · · ∪ Vr , all of size exactly k,
there exists a proper vertex k-colouring of G with each colour appearing exactly once in each Vi.
In the case when k does not divide n, G is defined to be strongly k-colourable if the graph obtained
by adding k

⌈
n
k

⌉
− n isolated vertices is strongly k-colourable. The strong chromatic number of G

is the minimum k for which G is strongly k-colourable. In this paper, we study the behaviour of
this parameter for the random graph Gn,p. In the dense case when p � n−1/3, we prove that the
strong chromatic number is a.s. concentrated on one value ∆ + 1, where ∆ is the maximum degree
of the graph. We also obtain several weaker results for sparse random graphs.

1. Introduction

Let G be a graph, and let V1, . . . , Vr be disjoint subsets of its vertex set. An independent trans-
versal with respect to {Vi}ri=1 is an independent set in G which contains exactly one vertex
from each Vi. The problem of finding sufficient conditions for the existence of an independent
transversal, in terms of the ratio between the part sizes and the maximum degree ∆ of the graph,
dates back to 1975, when it was raised by Bollobás, Erdős and Szemerédi [10]. Since then,
much work has been done [1, 5, 4, 14, 15, 17, 18, 22, 26, 27], and this basic concept has also
appeared in several other contexts, such as linear arboricity [3], vertex list colouring [23, 24, 8],
and cooperative colouring [2, 19]. In the general case, it was proved by Haxell [14] that an
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independent transversal exists as long as all parts have size at least 2∆. The sharpness of this
bound was shown by Szabó and Tardos [26], extending earlier results of [18] and [27]. On the
other hand, we proved in [19] that the upper bound can be further reduced to (1 + o(1))∆ if no
vertex has more than o(∆) neighbours in any single part. Such a condition arises naturally in
certain applications, e.g., vertex list colouring.

In the case when all of the Vi are of the same size k, it is natural to ask when it is possible to find
not just one but k disjoint independent transversals with respect to the {Vi}. This is closely related
to the following notion of strong colourability. Given a graph G with n vertices and a positive
integer k dividing n, we say that G is strongly k-colourable if, for every partition of V (G) into
disjoint sets V1 ∪ · · · ∪ Vr, all of size exactly k, there exists a proper vertex k-colouring of G
with each colour appearing exactly once in each Vi. Notice that G is strongly k-colourable if and
only if the chromatic number of any graph obtained from G by adding a union of vertex-disjoint
k-cliques is k. If k does not divide n, then we say that G is strongly k-colourable if the graph
obtained by adding k� n

k
� − n isolated vertices is strongly k-colourable. The strong chromatic

number of G, denoted sχ(G), is the minimum k for which G is strongly k-colourable.
The concept of strong chromatic number first appeared independently in work by Alon [3] and

Fellows [11]. It was also the crux of the longstanding ‘cycle plus triangles’ problem popularized
by Erdős, which was to show that the strong chromatic number of the cycle on 3n vertices is
three. That problem was solved by Fleischner and Stiebitz [12]. The strong chromatic number
is known [11] to be monotonic in the sense that strong k-colourability implies strong (k + 1)-
colourability. It is also easy to see that sχ(G) must always be strictly greater than the maximum
degree ∆: simply take V1 to be the neighbourhood of a vertex of maximal degree, and partition the
rest of the vertices arbitrarily. The intriguing question of bounding the strong chromatic number
in terms of the maximum degree has not yet been answered completely. Alon [4] showed that
there exists a constant c such that sχ � c∆ for every graph. Later, Haxell [15] improved the
bound by showing that it is enough to use c = 3, and in fact even c = 3 − ε for ε up to 1/4

[16]. On the other hand, Fleischner and Stiebitz [13] observed that the disjoint union of complete
bipartite graphs K∆,∆ cannot be strongly (2∆ − 1)-coloured. Indeed, put each part of one of the
K∆,∆ into the sets V1 and V2, respectively. Then these 2∆ vertices should get different colours.
It is believed that this lower bound is tight and the strong chromatic number of any graph with
maximum degree ∆ should be at most 2∆.

It is natural to wonder what is the asymptotic behaviour of the strong chromatic number for the
random graph Gn,p, relative to the maximum degree of the graph. As usual, Gn,p is the probability
space of all labelled graphs on n vertices, where every edge appears randomly and independently
with probability p = p(n). We say that the random graph possesses a graph property P almost
surely, or a.s. for brevity, if the probability that Gn,p satisfies P tends to 1 as n tends to infinity.
One of the most interesting phenomena discovered in the study of random graphs is that many
natural graph invariants are highly concentrated (see, e.g., [21] for the result on the clique number
and [25, 20, 6] for the concentration of the chromatic number). In this paper we show that the
strong chromatic number is another example of a tightly concentrated graph parameter. For dense
random graphs, it turns out that we can concentrate sχ(Gn,p) on a single value, and for some
smaller values of p we were only able to determine sχ(Gn,p) asymptotically. In the statement
of our first result, and in the rest of this paper, the notation f(n) � g(n) means that f/g → ∞
together with n. Also, all logarithms are in the natural base e.
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Theorem 1.1. Let ∆ be the maximum degree of the random graph Gn,p, where p < 1 − θ for
any arbitrary constant θ > 0.

(i) If p �
(

log4 n
n

)1/3
, then almost surely the strong chromatic number of Gn,p equals ∆ + 1.

(ii) If p �
(

log n
n

)1/2
, then a.s. the strong chromatic number of Gn,p is (1 + o(1))∆.

Unfortunately, our approach breaks down completely when p � n−1/2. However, for this range
of p, we have a different argument which shows how to find at least one independent transversal.

Theorem 1.2. Let ∆ be the maximum degree of the random graph Gn,p. If p � log4 n
n

, then almost
surely every collection of disjoint subsets V1, . . . , Vr of Gn,p with all |Vi| � (1 + o(1))∆ has an
independent transversal.

This rest of this paper is organized as follows. In Section 2, we prove both parts of our first
theorem concerning the strong chromatic number of relatively dense random graphs. We then
shift our attention to the sparser case, proving our second result about transversals in Section 3.
The last section of our paper contains some concluding remarks. Throughout this exposition, we
will make no attempt to optimize absolute constants, and will often omit floor and ceiling signs
whenever they are not crucial, for the sake of clarity of presentation.

2. Strong chromatic number

In this section we prove Theorem 1.1, which determines the value of the strong chromatic number
of a rather dense random graph. To this end, we first prove several lemmas that establish certain
useful properties of random graphs. We will use these properties to find a partition of Gn,p into
independent transversals.

2.1. Properties of random graphs

Lemma 2.1. Let θ > 0 be an arbitrary fixed constant. If
√

log n
n

� p < 1 − θ then a.s. Gn,p has
the following properties.

(i) No pair of distinct vertices has more than (1 + o(1))np2 common neighbours.
(ii) The maximum degree is strictly between np and 1.01np, and there is a unique vertex of

maximum degree.
(iii) The gap between the maximum degree and the next largest degree is at least

√
np

log n
.

Proof. For the first property, fix an arbitrary constant δ > 0 and two distinct vertices u and v.
Their codegree X is binomially distributed with parameters n − 2 and p2. Thus, by the Chernoff
bound (see, e.g., [7, Appendix A]), P[X � (1 + δ)np2] � e−Θ(δ2np2) = o(n−2). Taking a union
bound over all O(n2) choices for u and v, we find that the probability that the first property is not
satisfied tends to 0 as n → ∞. The second and third claims are special cases of Corollary 3.13
and Theorem 3.15 in [9], respectively.

Lemma 2.2. Let α > 0 be an arbitrary fixed constant and let
√

log n
n

� p � 3
5
. Then almost

surely Gn,p does not contain a set U of size αnp and 50 log n sets Ti, |Ti| � � 1
p
�, such that all the

sets are disjoint and for every i all but at most αnp/50 vertices in U have neighbours in Ti.
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Proof. Fix sets U and {Ti} as specified above. If all but at most αnp/50 vertices in U have
neighbours in Ti, we say for brevity that Ti almost dominates U. For a given vertex v, the
probability that it has a neighbour in Ti is 1 − (1 − p)|Ti| � 1 − (1 − p)�1/p� < 7/8 for all p �
3/5, since 1 − (1 − p)�1/p� is maximal in that range when p → 1/2 from below. Therefore, by a
union bound we have

P
[
Ti almost dominates U

]
�

(
αnp

αnp − αnp/50

)(
7

8

)αnp−αnp/50

=

(
αnp

αnp/50

)(
7

8

)49αnp/50

�
(

50e

(
7

8

)49)αnp/50

< 3−αnp/50.

Since all sets Ti are disjoint, the events that Ti and Tj almost dominate U are independent. This
implies that

P
[
every Ti almost dominates U

]
�

(
3−αnp/50

)50 log n
= 3−αnp log n.

Using that log n/p = o(np) and �1/p� � 2/p, we can bound the probability that there is a choice
of {Ti} and U which violates the assertion of the lemma by

P �
(

n

αnp

)[
2

p

(
n

2/p

)]50 log n

3−αnp log n

� nαnp
(

2

p

)50 log n

n
100 log n

p 3−αnp log n

= e(1+o(1))αnp log n · 3−αnp log n = o(1),

so we are done.

Lemma 2.3. Let α > 0 be an arbitrary fixed constant and let
√

log n
n

� p � 3
5
. Then almost

surely every collection of at most � 1
p
� disjoint subsets of size αnp in Gn,p has an independent

transversal.

Proof. Fix a collection of disjoint subsets V1, . . . , Vr, r � � 1
p
�, of Gn,p, each of size αnp. A

partial independent transversal T is an independent set with at most one vertex in every Vi, and
we say that it almost dominates some part if all but at most αnp/50 vertices in that part have
neighbours in T . For every Vi, let {Tij} be a maximal collection of pairwise disjoint partial
independent transversals, each of which almost dominates Vi. Then, by Lemma 2.2, a.s. the total
number of Tij must be at most r(50 log n). Delete all the sets Tij from the graph, and let {V ′

i } be
the remaining parts. Clearly, it suffices to find an independent transversal among the {V ′

i }.
Since log n/p = o(np) and each Tij is a partial transversal, each part loses a total of

� r(50 log n) � 50� 1
p
� log n = o(np) vertices from the deletions. We can now use the greedy

algorithm to find an independent transversal. Take v1 to be any remaining vertex in V ′
1, and

iterate as follows. Suppose that we have already constructed a partial independent transversal
{v1, . . . , v�−1} such that vi ∈ V ′

i for all i < �. This partial independent transversal does not almost
dominate V�, or else it would contradict the maximality of {T�j} above. So, there are at least
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αnp/50 choices for v� ∈ V� that would extend the partial independent transversal {v1, . . . , v�−1}.
Yet V� lost only o(np) vertices in the deletion process, so there is still a positive number of
choices for v� ∈ V ′

� as well. Proceeding in this way, we find a complete independent trans-
versal.

Lemma 2.4. Let
√

log n
n

� p � 3
5
. Then the following statement holds almost surely. For every

choice of s and t that satisfies np/2 � s � 2np and 40 log n � t � s − 40� 1
p
� log n, Gn,p does not

contain a collection of disjoint subsets U,T1, . . . , Tt such that |U| = s, each of the |Ti| � � 1
p
�,

and at least s − t vertices of U have neighbours in every Ti.

Proof. Fix some (s, t) within the above range. As we saw in the proof of Lemma 2.2, for a given
vertex v the probability that it has a neighbour in Ti is 1 − (1 − p)|Ti| � 1 − (1 − p)�1/p� < 7/8,
and by disjointness these events are independent for all 1 � i � t. Therefore we can bound the
the probability that there is a collection of sets which satisfies the above condition by

P �
(
n

s

)[
2

p

(
n

2/p

)]t

2s
(

7

8

)(s−t)t

� ns

s!

(
n2/p

)t
2s

(
7

8

)(s−t)t

� ns+2t/p

(
7

8

)(s−t)t

. (2.1)

Throughout this bound, we use � 1
p
� � 2

p
. The first binomial coefficient and the quantity in the

square brackets bound the number of ways to choose the sets U and {Ti}. The 2s bounds the
number of ways to select a subset of size s − t from U, and the final factor bounds the probability
that all vertices in this subset have neighbours in every Ti.

The logarithm of (2.1) is quadratic in t with positive t2-coefficient. Therefore, the right-
hand side of (2.1) is largest when t is minimum or maximum in its range 40 log n � t � s −
40� 1

p
� log n. Let us begin with the small end, i.e., t = 40 log n. Then, since log n/p � np and

s � np/2, we have that

ns+2t/p

(
7

8

)(s−t)t

� e(1+o(1))s log n

(
7

8

)(40−o(1))s log n

� e(1+o(1))s log n e−(4−o(1))s log n = o
(
n−2

)
.

Similarly, if t = s − 40� 1
p
� log n, the bound is

ns+2t/p

(
7

8

)(s−t)t

� e3s log n/p

(
7

8

)(40−o(1))s� 1
p
� log n

� e3s log n/p e−(4−o(1))s� 1
p
� log n = o

(
n−2

)
.

Since the number of choices for t and s is at most n2, we conclude that the probability that the
assertion of the lemma is violated is o(1).
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2.2. Proof of Theorem 1.1
We start by proving part (i) of Theorem 1.1. If ∆ is the maximum degree of Gn,p, then the strong
chromatic number must be at least ∆ + 1, as we mentioned in the Introduction. Suppose that
G is a graph obtained from Gn,p by adding (∆ + 1)� n

∆+1
� − n isolated vertices, and we have a

partition of V (G) into V1 ∪ · · · ∪ Vr with every |Vi| = ∆ + 1. By Lemma 2.1, ∆ � np almost
surely, so this implies that r � � 1

p
�. Note that if 3/5 � p < 1 − θ, then r � 2 and the theorem is

an immediate consequence of the following lemma.

Lemma 2.5. Let 3/5 � p < 1 − θ, where θ > 0 is an arbitrary fixed constant, and let V (G) =

V1 ∪ V2 be a partition of the vertices of G described above, with |V1| = |V2| = ∆ + 1. Then a.s.
V1 can be perfectly matched to V2 via non-edges of G.

Proof. Without loss of generality, we may assume that V1 contains at most n/2 original vertices
of Gn,p. Let B ⊂ V1 be those original vertices. The rest of V1 consists of isolated vertices, so any
perfect matching of B to V2 trivially extends to a full perfect matching between V1 and V2.
Therefore, by Hall’s theorem, it suffices to verify that each subset A ⊂ B has at least |A| non-
neighbours in V2. If A = {v} is a single vertex, this is immediate because |V2| > ∆ � d(v). For
larger A, the Hall condition translates into checking that ∆ + 1 − |N(A)| � |A|, where N(A)

denotes the set of common neighbours of A in V2. Since |A| � 2 we have, by Lemma 2.1(i),
that the size of N(A) is at most (1 + o(1))np2. So the Hall condition is satisfied for all A with
2 � |A| � θnp/2 < ∆ − (1 + o(1))np2.

Let c be a constant for which p − 2pc > 1/2 for all p in the range [3/5, 1 − θ). One can easily
show using a Chernoff bound that a.s. every set of c distinct vertices in Gn,p has at most 2npc

common neighbours. This implies that the Hall condition is also satisfied for all A of size at least
c, since then

∆ + 1 − |N(A)| > np − 2npc > n/2 � |B| � |A|.

Together with the previous paragraph, this completes the proof.

It remains to consider p < 3/5, so we will assume that bound on p for the remainder of this
section. We use the following strategy to produce a partition of ∪Vi into a disjoint union of
independent transversals.

(1) Find an independent transversal through the unique vertex of maximum degree ∆, and delete
this transversal from the graph.

(2) As long as there exists a vertex v which has at least 0.9np neighbours in some part Vi, find an
independent transversal T through v, and delete T from the graph.

(3) As long as there exists a minimal partial independent transversal T such that all but at most
np/100 vertices in some part Vi have neighbours in T , split T into two non-empty (|T | � 2

because of step (2)) disjoint partial independent transversals T1 ∪ T2. Note that by minimality
of T , each part Vi contains a subset Ui of at least np/100 vertices which have no neighbours
in T1. By Lemma 2.3, there is an independent transversal through {Ui}, which can be used to
extend T1 to a full independent transversal T ′

1. Delete T ′
1 from the graph, and then perform

the same completion/deletion procedure for T2.
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(4) Finally, we construct the rest of the independent transversals, building them simultaneously
from V1 to Vr using Hall’s matching theorem. Our deletions in steps (1)–(3), together with
the properties of Gn,p which we established in the previous subsection, will ensure that this is
possible.

The following lemma, which we prove later, ensures that we will indeed find the independent
transversals claimed in steps (1)–(2).

Lemma 2.6. Let V1 ∪ · · · ∪ Vr be the above partition of V (G), and let x be any vertex in this
graph.

• If x is the unique vertex of maximum degree ∆, then G contains an independent transversal
through x.

• If x is not of maximum degree, then for all k � � 1
p
� and for any collection of subsets V ′

i ⊂ Vi,
|V ′

i | = ∆ + 1 − k, one of which contains x, there exists an independent transversal through
x with respect to {V ′

i }.

Let us bound the number of independent transversals we delete in the first three steps. Note
that if two vertices have at least 0.9np neighbours in the same Vi, since by Lemma 2.1 |Vi| �
∆ + 1 � 1.01np, their codegree will be at least 0.79np � 1.01np2, contradicting Lemma 2.1.
Therefore, during the first two steps, we will delete at most r + 1 � � 1

p
� + 1 transversals. Next,

suppose that after deleting O
(
� 1
p
� log n

)
independent transversals from G, we have that for some

set T all but at most np/100 vertices of some Vi have neighbours in T . Since � 1
p
� log n � np,

this certainly implies that the number of vertices in the original Vi with no neighbours in T was
bounded by np/50. Together with Lemma 2.2, this ensures that for each fixed Vi, 1 � i � r,
we never repeat step (3) more than 50 log n times. Since each iteration deletes two independent
transversals and r � � 1

p
�, we conclude that by the time we reach step (4), we have deleted at

most 1 + � 1
p
� + 100� 1

p
� log n < 110� 1

p
� log n independent transversals from G.

Let us now describe step (4) in more detail. At this point, all parts Vi have the same size |Vi| =

s = ∆ + 1 − k, where k < 110� 1
p
� log n = o(np) is the total number of independent transversals

deleted so far. We build the remaining s disjoint independent transversals simultaneously as
follows. Start s partial independent transversals {Ti}si=1 by arbitrarily putting one vertex of V1

into each Ti. Now suppose we already have disjoint partial independent transversals {Ti}si=1

through V1, . . . , V�. Create an auxiliary bipartite graph H whose right side is V�+1 and whose
left side has s vertices, identified with the transversals {Ti}. Join the ith vertex on the left side
with a vertex v ∈ V�+1 if and only if v has no neighbours in Ti. Then, a perfect matching in this
graph will yield a simultaneous extension of each Ti which covers V�+1.

We ensure a perfect matching in H by verifying the Hall condition, i.e., we show that, for
every t � s, every set of t vertices on the left side of H has neighbourhood on the right side of
size at least t. Observe that after step (3), for every Ti there are more than np/100 vertices in
V�+1 which have no neighbours in Ti. Therefore every vertex on the left side of H has degree
greater than np/100 and hence the Hall condition is trivially satisfied for all t � np/100. If
the Hall condition fails for some np/100 < t � s − 40� 1

p
� log n, then by definition of H , there

are t partial independent transversals among {Ti} and a subset W of V�+1 of size greater than
s − t such that every vertex of W has neighbours in every one of these transversals (i.e., is not
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adjacent to them in H). This contradicts Lemma 2.4, so the Hall condition also holds for these t. It
remains to check the case when t > s − 40� 1

p
� log n. Note that given any vertex v in V�+1 and any

collection of disjoint partial independent transversals, the number of them in which v can have a
neighbour is at most the degree of v. However, we deleted the maximum degree vertex in step (1),

so by Lemma 2.1 d(v) � ∆ −
√
np

log n
. Since p �

(
log4 n
n

)1/3
, this is less than ∆ − 150� 1

p
� log n �

s − 40� 1
p
� log n. Therefore, in the auxiliary graph H , any set of t > s − 40� 1

p
� log n vertices on

the left side has neighbourhood equal to the entire right side. Hence Hall’s condition is satisfied
for all t and we can extend our transversals. This completes the proof, since one can iterate this
extension procedure to convert all Ti into full independent transversals.

Proof of Lemma 2.6. First, consider the case when x is not the vertex of maximum degree ∆

and we have a collection of subsets V ′
i ⊂ Vi of size ∆ + 1 − k, where k � � 1

p
�. Without loss of

generality, assume that x ∈ V ′
1, and recall that by Lemma 2.1, the maximum degree ∆ satisfies

np < ∆ < 1.01np. If the number of neighbours of x in every set V ′
i , i � 2, is at most 0.96np

then delete them and denote the resulting sets V ′′
i . Since each V ′′

i still has size at least ∆ + 1 −
� 1
p
� − 0.96np > 0.03np, by Lemma 2.3 there exists a partial independent transversal through

V ′′
2 , . . . , V

′′
r , which together with x provides a full independent transversal containing x. Next,

suppose that x has at least 0.96np neighbours in some part, say V ′
2. Since the degree of x is less

than ∆ < 1.01np, it must then have fewer than 0.05np neighbours in every other V ′
i . Furthermore,

since x is not of maximum degree and p �
(

log4 n
n

)1/3
, Lemma 2.1 implies that (∆ + 1) − d(x) �

√
np

log n
� 2� 1

p
� � r + k. Therefore there are more than r vertices in V ′

2 not adjacent to x. Also by

Lemma 2.1, the codegree of every pair of vertices is at most 1.01np2 < 0.61np, so in particular
no two vertices can both have � 0.9np neighbours in any given V ′

i . By the pigeonhole principle,
there must be a vertex y ∈ V ′

2 not adjacent to x with fewer than 0.9np neighbours in each of
the other V ′

i . That means that every other part has fewer than 0.05np neighbours of x and 0.9np

neighbours of y. Since |V ′
i | � ∆ − � 1

p
� > 0.99np, there are still at least 0.04np vertices left in

each V ′
i , i � 3, that are non-adjacent to both x and y. Thus we can apply Lemma 2.3 as above to

complete {x, y} into an independent transversal.
The case when x is the vertex of maximum degree has a similar proof but involves one more

step. As in the previous paragraph, we may assume that x ∈ V1 and has at least 0.96np neighbours
in V2, or else we are done. Let W2 be the set of vertices in V2 that are not adjacent to x. Since
|V2| = ∆ + 1, we have W2 
= ∅. If there exists some y ∈ W2 that has < 0.9np neighbours in each
of the other Vi, i � 3, then we can complete {x, y} to a full independent transversal as above.
Otherwise, by Lemma 2.1 the codegree of every pair of vertices is at most 1.01np2 < 0.61np and
hence each y ∈ W2 is associated with a distinct part in which it has � 0.9np neighbours. Yet x has
exactly |W2| − 1 neighbours among the other parts Vi, i � 3, so there must exist y ∈ W2 such that
x has no neighbours in the part (without loss of generality it is V3) in which y has � 0.9np neigh-

bours. Since x is the unique vertex of maximum degree and p �
(

log4 n
n

)1/3
, Lemma 2.1 gives

d(y) � ∆ −
√
np

log n
< ∆ −

⌈
1

p

⌉
� ∆ − r.

Therefore V3 contains a subset W3 of at least r + 1 vertices which are not adjacent to both x and
y. Since for every i � 4 at most one vertex in W3 can have more than 0.81 neighbours in Vi (by
another codegree argument), the pigeonhole principle ensures that there is a vertex z ∈ W3 such
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that z has at most 0.81np neighbours in each Vi, i � 4. Also note that x has fewer than 0.05np

neighbours in each such Vi, and y has fewer than 0.11np. Therefore every Vi, i � 4, has in total
fewer than 0.05np + 0.11np + 0.81np < (∆ + 1) − 0.03np neighbours of any of {x, y, z}, so we
can apply Lemma 2.3 as before to complete {x, y, z} into an independent transversal.

Proof of Theorem 1.1(ii). We may assume that p < n−1/4 because the case p � n−1/4 is
already a consequence of part (i) of this theorem. Fix an arbitrary ε > 0. Suppose that G is a graph
obtained from Gn,p by adding (1 + ε)∆� n

(1+ε)∆
� − n isolated vertices and V (G) is partitioned into

V1 ∪ · · · ∪ Vr with every |Vi| = (1 + ε)∆. Since ∆ � np a.s., we have that r � � 1
p
�. We use the

same steps (1)–(4) to produce a partition of ∪Vi into a disjoint union of independent transversals.
Actually steps (1)–(2) can now be made into a single step, since there is no need here to treat
the vertex of maximum degree separately. The codegree argument implies again that we perform
steps (1)–(2) at most r + 1 times. Moreover, the existence of the independent transversals claimed
in these two steps follows easily from Lemma 2.3. Indeed, suppose that we have deleted O(� 1

p
�)

independent transversals from G. Since p � ( log n
n

)1/2, we have 1/p = o(np) and thus every part
still has size at least (1 + ε/2)∆. Let x be an arbitrary remaining vertex. Since the degree of x is
at most ∆, every part still contains at least ε∆/2 vertices non-adjacent to x. By Lemma 2.3, we
can find an independent transversal through these vertices which will extend {x}.

There is no change in the analysis of step (3) and the same argument as in the proof of
part (i) shows that the total number of transversals deleted from G in steps (1)–(3) is at most

O
(
� 1
p
� log n

)
. Since p �

(
log n
n

)1/2
, this number is o(np), and therefore in the beginning of

step (4) each part Vi still has size s � (1 + ε/2)∆. Recall that in step (4) we build the remaining
s disjoint independent transversals simultaneously, extending them one vertex at a time to cover
each new part V�+1. So again we define an auxiliary bipartite graph H whose left part corresponds
to the partial independent transversals {Ti} on V1, . . . , V�, whose right part is V�+1, and the ith
vertex on the left is adjacent to v ∈ V�+1 if and only if v has no neighbours in transversal Ti. A
perfect matching in H gives a simultaneous extension of each Ti.

Hence it is enough to verify the Hall condition for H , i.e., we must show that, for all t � s,
every set of t vertices on the left has at least t neighbours on the right. The proof that this holds for
all t � s − 40� 1

p
� log n is exactly the same as in part (i) and we omit it here. So suppose that t >

s − 40� 1
p
� log n � s − o(np) > (1 + ε/3)∆. Since the degree of every vertex v ∈ V�+1 is at most

∆, it can have neighbours in at most ∆ < t transversals. Therefore there is at least one transversal
in our set of size t which has no neighbours of v, and hence every set of t > s − 40� 1

p
� log n

vertices on the left has neighbourhood equal to the entire right side of H . This verifies the Hall
condition and completes the proof.

3. Independent transversals

In this section, we prove our second theorem. We need only consider here the range

log4 n

n
� p � log3/4 n√

n
,

since part (ii) of Theorem 1.1 implies Theorem 1.2 for larger values of p. Again, we begin by
showing that Gn,p satisfies certain properties almost surely.
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3.1. Properties of random graphs
Lemma 3.1. If log n

n
� p � log3/4 n√

n
, then a.s. Gn,p has the following properties.

(1) No pair of distinct vertices has more than 3 log3/2 n common neighbours.
(2) The maximum degree is strictly between np and 1.01np.

Proof. The codegree X of a fixed pair of vertices is binomially distributed with parameters
n − 2 and p2. Therefore

P
[
X � 3 log3/2 n

]
�

(
n − 2

3 log3/2 n

)
(p2)3 log3/2 n

�
(

enp2

3 log3/2 n

)3 log3/2 n

� (e/3)3 log3/2 n = o(n−2).

Taking a union bound over all O(n2) pairs of vertices, we see that the first property holds a.s. The
second property is a special case of Corollary 3.13 in [9].

Lemma 3.2. Let C � 20 and let G be a graph obtained from the random graph Gn,p by con-
necting every vertex to at most 8 log2 n new neighbours. Then a.s. every subset S ⊂ V (G) of
size |S | � Cp−1 log2 n spans a subgraph with average degree less than 6C log2 n, i.e., contains
< 3C|S | log2 n edges.

Proof. Since the edges which we add to the random graph can increase the number of edges
inside S by at most |S |(8 log2 n)/2 = 4|S | log2 n, it suffices to show that in Gn,p a.s. every subset
S as above spans fewer than eC|S | log2 n edges. The probability that this is not the case is at most

Cp−1 log2 n∑
m=1

(
n

m

)( (
m
2

)
eCm log2 n

)
peCm log2 n �

Cp−1 log2 n∑
m=1

nm
(

em

2eC log2 n
· p

)eCm log2 n

�
Cp−1 log2 n∑

m=1

nm2−eCm log2 n

�
Cp−1 log2 n∑

m=1

(
n2−eC log2 n

)m
= o(1),

so we are done.

3.2. Proof of Theorem 1.2
Fix ε > 0, and suppose we have disjoint subsets V1, . . . , Vr of Gn,p, with all |Vi| = (1 + ε)∆. By
Lemma 3.1, r < n/∆ < 1/p. If a vertex v has more than ∆

log n
neighbours in some Vi, say that v

is locally big with respect to Vi. If it has more than ∆
2 log n

, call it almost locally big. For each i,
let Bi be the set of v that are almost locally big with respect to Vi. We claim that |Bi| < 4 log n.
Indeed, if |Bi| � 4 log n, then Lemma 3.1, together with ∆ � log4 n and the Jordan–Bonferroni
inequality, would imply that the union of neighbourhoods in Vi of vertices from Bi is at least

(4 log n)
∆

2 log n
−

(
4 log n

2

)
3 log3/2 n � 3

2
∆ > |Vi|,
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a contradiction. Next, make each Bi a clique by adding all the missing edges. However, ∆ will still
refer to the maximum degree of the original graph. Since each vertex is almost locally big with
respect to fewer than 2 log n sets Vi, this operation increases the degree of each vertex by less
than 2 log n · 4 log n = 8 log2 n � ∆

2 log n
. Thus every vertex that is locally big after the additions

was almost locally big before. In particular, there is now an edge between every pair of vertices
that are locally big with respect to the same Vi, and there are fewer than r(4 log n) < 4p−1 log n

locally big vertices in total.
Let I1 ⊂ [r] be the set of indices i such that Vi contains more than ε

4
∆ locally big vertices, and

define the notation VS to represent
⋃

i∈S Vi. Note that

|VI1 | < (1 + ε)∆ ·
(
ε

4
∆

)−1

4p−1 log n < 20ε−1p−1 log n

(we can assume here and in the rest of the proof that ε is sufficiently small). As long as there exist
i 
∈ I1 such that there are more than (240ε−1 log2 n)|Vi| crossing edges between Vi and VI1 , add
i to I1. Note that each such index which we add to VI1 increases the number of edges in this set
by more than (240ε−1 log2 n)|Vi|. Therefore, if in this process I1 doubles in size, we obtain a set
of size at most 40ε−1p−1 log n with average degree more than 240ε−1 log2 n, which contradicts
Lemma 3.2. Thus at the end of the process we have |I1| � 40ε−1p−1 log n.

Given I1, for t � 1 we recursively define It+1 ⊂ It as follows. By Lemma 3.2, VIt induces

fewer than (120ε−1 log2 n)|VIt | edges. Thus, there are fewer than 2
(

∆
log ∆

)−1 · (120ε−1 log2 n)|VIt |
vertices in VIt with > ∆

log ∆
neighbours in this set. To define It+1 we consider the following

process. Start with It+1 to be the set of all i ∈ It for which Vi has more than ε
4
∆ vertices that

have > ∆
log ∆

neighbours in VIt . As long as there exist i ∈ It \ It+1 such that there are more than

(240ε−1 log2 n)|Vi| edges between Vi and VIt+1
, add i to It+1. As above, Lemma 3.2 ensures that

this process must stop before It+1 doubles in size. Therefore, in the end we have

|It+1| � 2

(
ε

4
∆

)−1

· 2

(
∆

log ∆

)−1

· (120ε−1 log2 n)|VIt |

� O

(
log2 n log ∆

∆2
|VIt |

)
� O

(
log2 n log ∆

∆
|It|

)

� 1

log n
|It|.

Clearly, |I1| � r � n. Therefore, when t � 2 log n
log log n

, It will be empty. Let σ be the smallest index
such that Iσ = ∅. We now recursively build partial independent transversals Tσ, . . . , T1, where Tt

is an independent transversal on VIt . Let us say that Tt satisfies property Pt if, for every i 
∈ It, all
the vertices in Tt that are not locally big with respect to Vi have together at most 300(σ − t) ∆

log n

neighbours in Vi. It is clear that Tσ = ∅ satisfies Pσ , so we can apply the following lemma
inductively to construct T1, an independent transversal on VI1 satisfying P1.

Lemma 3.3. Suppose t > 1, and Tt is an independent transversal on VIt which satisfies Pt.
Then we can extend Tt to Tt−1, an independent transversal on VIt−1

which satisfies Pt−1.

We postpone the proof of this lemma until Section 3.4. Suppose that we have T1 as described
above. Let J1 be the set of all indices j 
∈ I1 such that some v ∈ T1 is locally big with re-
spect to Vj . Then, as we did with I1, as long as there exist � 
∈ I1 ∪ J1 such that more than
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(600ε−1 log2 n)|V�| edges cross between V� and VJ1
, add � to J1. Since |T1| = |I1| and each

vertex can be locally big with respect to at most (1 + o(1)) log n sets Vi, we have that initially
|J1| � (1 + o(1))|I1| log n � 50ε−1p−1 log2 n. Therefore, as before, Lemma 3.2 ensures that this
process stops before J1 doubles in size, so the final set J1 has size at most 100ε−1p−1 log2 n.

As before, we construct a sequence of nested index sets J1 ⊃ · · · ⊃ Jτ = ∅, where for t � 1,
define Jt+1 in terms of Jt as follows. Let Jt+1 ⊂ Jt be the set of all j ∈ Jt for which Vj contains
more than ε

4
∆ vertices that have > ∆

log ∆
neighbours in VJt . Next, as long as there exist j ∈ Jt \

Jt+1 such that more than (600ε−1 log2 n)|Vj | edges cross between Vj and VJt+1
, add j to Jt+1.

Lemma 3.2 again ensures that we stop before Jt+1 doubles in size, and the same computation as
we did for It+1 shows that |Jt+1| � 1

log n
|Jt|. Thus, when t � 2 log n

log log n
, Jt is empty. Let τ be the

smallest index for which Jτ = ∅.
Next, delete all neighbours of T1 in VJ1

and all vertices in VJ1
that are locally big with respect

to any Vk with k 
∈ I1. Denote the resulting sets by V ′
j , j ∈ J1. We claim that each V ′

j still has size
at least ε

2
∆. Indeed, at most one v ∈ T1 can be locally big with respect to Vj , because T1 is an

independent set and all vertices that are locally big with respect to the same part were connected
by our construction. Thus deleting neighbours of this v can decrease the size of Vj by at most
d(v) < ∆ + 8 log2 n = (1 + o(1))∆. As for the remaining vertices in T1, which are not locally big
with respect to Vj , P1 ensures that together they have at most O

(
σ ∆

log n

)
= o(∆) neighbours in Vj ,

since σ � 2 log n
log log n

. Also, by construction of I1, every part whose index is not in I1 has at most ε
4
∆

locally big vertices. Hence the size of V ′
j is at least |Vj | − (1 + o(1))∆ − ε

4
∆ � ε

2
∆, as claimed.

Let us say that a set Ut satisfies property Qt if, for every k 
∈ I1 ∪ Jt, all the vertices in Ut that
are not locally big with respect to Vk have together at most 300(τ − t) ∆

log n
neighbours in Vk. We

need the following analogue of Lemma 3.3.

Lemma 3.4. Suppose t > 1, and Ut is an independent transversal on V ′
Jt

which satisfies Qt.
Then we can extend Ut to Ut−1, an independent transversal on V ′

Jt−1
which satisfies Qt−1.

We also postpone the proof of this lemma until Section 3.4. Starting with Uτ = ∅, we iterate
this lemma until we obtain U1, an independent transversal on V ′

J1
which satisfies Q1. Since

τ � 2 log n
log log n

, this property implies that each Vk with k 
∈ I1 ∪ J1 has O
(
τ ∆

log n

)
= o(∆) vertices

with neighbours in U1.
Finally, let K = [r] \ (I1 ∪ J1). Delete all neighbours of T1 ∪ U1 and all locally big vertices

from every Vk with k ∈ K, and denote the resulting sets by V ′
k. All V ′

k will still have size at least(
1 + ε

2

)
∆, but now no vertex there has more than ∆

log n
neighbours in any single set V ′

k. Thus, the
following result from [19] implies that for sufficiently large n, there is an independent transversal
on V ′

K , which completes T1 ∪ U1 into an independent transversal through all parts.

Theorem 3.5 (Loh and Sudakov [19]). For every ε > 0 there exists γ > 0 such that the fol-
lowing holds. If G is a graph with maximum degree at most ∆ whose vertex set is partitioned
into r parts V1, . . . Vr of size |Vi| � (1 + ε)∆, and no vertex has more than γ∆ neighbours in any
single part Vi, then G has an independent transversal.

This completes the proof of Theorem 1.2, modulo two remaining lemmas.
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3.3. Probabilistic tools
We take a moment to record two results which we will need for the proofs of the remaining
lemmas. The first is the symmetric version of the Lovász Local Lemma, which is typically used
to show that with positive probability, no ‘bad’ events happen.

Theorem 3.6 (Lovász Local Lemma [7]). Let E1, . . . , En be events. Suppose that there exist
numbers p and d such that all P[Ei] � p, and each Ej is mutually independent of all but at most
d of the other events. If ep(d + 1) � 1, then P[

⋂
Ei] > 0.

The following result is a short consequence of this lemma, and we sketch its proof for com-
pleteness.

Proposition 3.7 (Alon [3]). Let G be a multipartite graph with maximum degree ∆, whose parts
V1, . . . , Vr all have size at least 2e∆. Then G has an independent transversal.

Proof. Independently and uniformly select one vertex from each Vi, which we may assume is
of size exactly �2e∆�. For each edge f of G, let the event Af be when both endpoints of f are
selected. The dependencies are bounded by 2�2e∆�∆ − 2, and each P[Af] � �2e∆�−2, so the
Local Lemma implies this statement immediately.

3.4. Proofs of remaining lemmas
Since the proofs of Lemmas 3.3 and 3.4 are very similar, we only prove Lemma 3.3. We will
simply indicate the two places where the proofs differ.

Proof of Lemma 3.3. Fix some t as in the statement of the lemma. To extend an independent
transversal Tt on the set VIt , satisfying Pt, to one on the larger set VIt−1

, satisfying Pt−1, we will
use the following key properties of our construction.

(i) For every i ∈ It−1 \ It, the set Vi contains at most ε
4
∆ vertices that have > ∆

log ∆
neighbours

in VIt−1
.

(ii) Each set Vi has size (1 + ε)∆.
(iii) For every i 
∈ It−1, there are at most (β log2 n)|Vi| edges between Vi and VIt−1

, where we
define the constant β to be 240ε−1.

In the case of Lemma 3.4, property (ii) is that each set V ′
j has size at least ε

2
∆, and the constant

β in property (iii) is β = 600ε−1.
Let D = It−1 \ It. From every Vi with i ∈ D, delete all vertices that have > ∆

log ∆
neighbours

in VIt−1
, and all neighbours of vertices in Tt. Denote the resulting sets by V ∗

i . Note that now all
degrees in the subgraph on V ∗

D =
⋃

i∈D V ∗
i are at most ∆

log ∆
. Furthermore, we claim that every

|V ∗
i | � ε

6
∆. To see this, recall that at most one vertex v ∈ Tt can be locally big with respect to

Vi, because Tt is independent and all vertices that are locally big with respect to the same part
are connected by our construction. Deleting neighbours of such v can decrease the size of Vi by
at most d(v) < ∆ + 8 log2 n = (1 + o(1))∆. The rest of the vertices in Tt are not locally big with
respect to Vi, so Pt implies that they have fewer than O

(
σ ∆

log n

)
= o(∆) neighbours in Vi since

σ � 2 log n
log log n

. Finally, by property (i) above, in Vi we will delete at most ε
4
∆ vertices that have
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> ∆
log ∆

neighbours in VIt−1
, so property (ii) implies that

|V ∗
i | � (1 + ε)∆ − (1 + o(1))∆ − ε

4
∆ � ε

6
∆,

as claimed.
In the case of Lemma 3.4, recall that by construction all V ′

j with j ∈ J1 contain no locally
big vertices with respect to any part (we deleted all of them). Thus, the partial transversal Ut

contains no locally big vertices with respect to V ′
j . Property Qt then implies that the total number

of neighbours that vertices of Ut have in V ′
j is only O

(
τ ∆

log n

)
= o(∆). Hence when we reduce V ′

j

to V ∗
j by deleting all neighbours of Ut, and all vertices that have > ∆

log ∆
neighbours in VJt−1

, the
total effect of Ut is o(∆), not (1 + o(1))∆ as above. Combining this with properties (i) and (ii),
we see that |V ∗

j | � |V ′
j | − o(∆) − ε

4
∆ � ε

6
∆, so the claim is still true. This is the second and final

place in which the proofs of the two lemmas differ, and explains why Lemma 3.4 holds with part
sizes of only ε

2
∆, while Lemma 3.3 requires part sizes of (1 + ε)∆.

Returning to the proof of Lemma 3.3, randomly select a subset Wi ⊂ V ∗
i for each i ∈ D

by independently choosing each remaining vertex of V ∗
i with probability log3 ∆

∆
, and let W =⋃

i∈D Wi. Define the following families of bad events. For each i ∈ D, let Ai be the event that
|Wi| < ε

8
log3 ∆, and for each v ∈ V ∗

D, let Bv be the event that v has more than 2 log2 ∆ neighbours
in W . Also, for each j 
∈ It−1, let Cj be the event that the collection of vertices in W that are
not locally big with respect to Vj has neighbourhood in Vj of size > 300 ∆

log n
. We use the Lovász

Local Lemma to show that with positive probability, none of these events happen.
Let us begin by bounding the dependencies. Say that Ai lives on V ∗

i , Bv lives on the neigh-
bourhood of v in V ∗

D, and Cj lives on the neighbourhood of Vj in V ∗
D. Note that each of our events

is completely determined by the outcomes of the vertices in the set that it lives on. Hence events
living on disjoint sets are independent. A routine calculation shows that for any given event, at
most O(∆3) other events can live on sets overlapping with its set; the worst case is that an event
of C-type can live on a set that overlaps with the sets of � (1 + ε)∆3 other C-type events.

It remains to show that each of P[Ai], P[Bv], and P[Cj] are � ∆−3. The size of Wi is distrib-
uted binomially with expectation � ε

6
log3 ∆, so by a Chernoff bound, P[Ai] < e−Ω(log3 ∆) � ∆−3.

Similarly, for each v ∈ V ∗
D the expected value of the degree of v in W is at most ∆

log ∆
· log3 ∆

∆
=

log2 ∆ so P[Bv] < e−Ω(log2 ∆) � ∆−3. For P[Cj], we proceed more carefully. For each 0 � k � 8,
let Yk be the set of vertices in V ∗

D that have between ∆
∆(k+1)/8 log n

and ∆
∆k/8 log n

many neighbours

in Vj . By property (iii), the number of edges between VIt−1
and Vj is at most (β log2 n)|Vj | �

2β∆ log2 n. Therefore, |Yk| � 2β∆(k+1)/8 log3 n. However, since ∆ � np � log4 n, the probabil-
ity that at least 30∆k/8 vertices in Yk are selected to be in W is bounded by

P �
(

2β∆(k+1)/8 log3 n

30∆k/8

)(
log3 ∆

∆

)30∆k/8

�
(
e · 2β∆1/8 log3 n

30
· log3 ∆

∆

)30∆k/8

�
(
eβ

15
· log3 ∆

∆1/8

)30∆k/8

� ∆−3.

Therefore, with probability 1 − o(∆−3), the collection of vertices in W that are not locally big
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with respect to Vj has neighbourhood in Vj of size less than

8∑
k=0

30∆k/8 ∆

∆k/8 log n
< 300

∆

log n
,

and hence P[Cj] � ∆−3.
By the Lovász Local Lemma, there exist subsets Wi ⊂ V ∗

i for each i ∈ D such that none of
Ai, Bv, or Cj hold. In particular, every |Wi| is greater than 2e times the maximum degree in the
subgraph induced by W , so Proposition 3.7 implies that there exists an independent transversal
T ′ there. Letting Tt−1 = Tt ∪ T ′, we obtain an independent transversal on VIt−1

. Since T ′ ⊂ W

and no Cj holds, we have that, for every j 
∈ It−1, the vertices in Tt ∪ T ′ which are not locally
big with respect to Vj have together at most

300(σ − t)
∆

log n
+ 300

∆

log n
= 300(σ − (t − 1))

∆

log n

neighbours in Vj , i.e., Tt ∪ T ′ satisfies Pt−1.

4. Concluding remarks

A simple modification of our argument yields a slight improvement of Theorem 1.2, and shows
that the theorem is in fact true for all p � log3+α

n
, for any fixed α > 0. We decided not to prove that

result here in such generality for the sake of clarity of presentation. Also, it is not very difficult,
using our approach, to prove a statement similar to Theorem 1.2 for the sparse case, when p ∼ c

n

for some constant c. However, these extensions are not as interesting as the main problem that
remains open, which is to study the behaviour of the strong chromatic number of random graphs
when p � n−1/2. We are certain that the strong chromatic number of the random graph Gn,p is a.s.
(1 + o(1))∆ for every p � c

n
for some constant c. It would also be very interesting to determine

all the values of the edge probability p for which almost surely sχ(Gn,p) is precisely ∆ + 1.
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