Putnam $\Sigma.12$

Po-Shen Loh

12 November 2017

1 Problems

Putnam 2009/A4. Let S be a set of rational numbers such that

- (a) $0 \in S;$
- (b) If $x \in S$ then $x + 1 \in S$ and $x 1 \in S$; and
- (c) If $x \in S$ and $x \notin \{0,1\}$, then $\frac{1}{x(x-1)} \in S$.

Must S contain all rational numbers?

Putnam 2009/A5. Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

Putnam 2009/A6. Let $f : [0,1]^2 \to \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^2$. Let $a = \int_0^1 f(0,y) \, dy$, $b = \int_0^1 f(1,y) \, dy$, $c = \int_0^1 f(x,0) \, dx$, $d = \int_0^1 f(x,1) \, dx$. Prove or disprove: There must be a point (x_0, y_0) in $(0,1)^2$ such that $\frac{\partial f}{\partial y} = \int_0^1 f(x,0) \, dx$, $d = \int_0^1 f(x,1) \, dx$.

$$\frac{\partial f}{\partial x}(x_0, y_0) = b - a$$
 and $\frac{\partial f}{\partial y}(x_0, y_0) = d - c.$