21-228 Discrete Mathematics

Assignment 7

Due Mon Apr 24, at start of class

Notes: Collaboration is permitted except in the writing stage. Also, please justify every numerical answer with an explanation.

1. Is the following statement true for every positive integer n ?

Every graph consisting of two edge-disjoint Hamiltonian paths contains a Hamiltonian cycle.
2. Construct a random graph on n vertices as follows. Start with n vertices, with no edges. Then, for each of the $\binom{n}{2}$ pairs of vertices, flip a (very unfair) coin which is heads with probability $\frac{1}{n^{1.01}}$. If it is heads, put the edge between that pair of vertices; otherwise, do not.
Let q_{n} be the probability that the resulting graph contains a triangle (three vertices a, b, c with edges $a b, b c$, and $c a$ all present). Show that

$$
\lim _{n \rightarrow \infty} q_{n}=0 .
$$

3. Construct a random graph on n vertices as follows. Start with n vertices, with no edges. Then, for each of the $\binom{n}{2}$ pairs of vertices, flip a (very unfair) coin which is heads with probability $\frac{1}{n}$. If it is heads, put the edge between that pair of vertices; otherwise, do not. Prove that the probability of the graph being connected tends to zero as $n \rightarrow \infty$. (Much more is true.)
4. Let $R(t, t, t)$ be the smallest integer n such that every 3 -coloring of the edges of K_{n} contains a monochromatic K_{t}. Prove that
(a) $R(t, t, t) \leq 27^{t}$, and
(b) derive an exponential lower bound for the 3 -color Ramsey number $R(t, t, t)$. That is, for each t, come up with an n_{t}, and a 3-coloring of the edges of $K_{n_{t}}$ such that there is no monochromatic K_{t}, where n_{t} grows exponentially with t.

Note: I can do this with $n_{t}=3^{t / 2}$ for every even t (which is sufficient), but it is OK if you prove this with a different n_{t}, as long as yours grows exponentially with t.
5. There are 100 cities in a country, called " 1 ", " 2 ", \ldots, " 100 ". The government would like to connect them all with a network, and it costs $\max \{|i-j|, 4\}$ to lay a wire between cities " i " and " j ". (There is a minimum cost of 4 per wire.) Another company comes along, offering to create microwave links between city pairs at a cost of 2 each, with the catch that their technology can only connect city pairs of the form (" i ", " $2 i$ "). For example, it would cost 30 to lay a wire between cities 31 and 61, 4 to lay a wire between cities 31 and 32 , and 2 to microwave-link 30 and 60 . What is the minimum cost to create this connected network?

