21-228 Discrete Mathematics

Assignment 1
Due Fri Jan 27, at start of class

Notes: Collaboration is permitted except in the writing stage. Also, please justify every numerical answer with an explanation.

1. Recall that $A \triangle B$ denotes the symmetric difference of A and B, i.e., the set of all x that belong to exactly one of A or B. Simplify:

$$
((A \triangle B) \triangle(B \triangle C)) \triangle(C \triangle A)
$$

If you wish, you may express your answer in the form of a Venn diagram, with the final set shaded in.
2. Let $n \geq 3$. How many subsets of $\{1,2, \ldots, n\}$ contain exactly two of the integers $1,2,3$? For example, $\{1,2,7,9\}$ and $\{1,3,9\}$ would count, but $\{1,7,9\}$ would not.
3. King Kong has escaped, and is at the southwest corner of Central Park (59th St / 8th Ave). He wants to get to the Empire State Building (34th St / 5th Ave) as quickly as possible, but he must avoid Times Square (42nd St / 7th Ave). If he always takes the most direct route, in how many ways can this be done? Assume the streets form a perfect grid, i.e., ignore Broadway, parks, etc. Answers may be expressed in terms of factorials or binomial coefficients, but summation notation and ellipses may not be used.
4. (\star) A 4-digit number is called a palindrome if it is the same when the digits are read in reverse. For example, 7337 and 3333 are 4-digit palindromes, but 1337 and 0990 are not. Note that 0990 doesn't count because it's actually a 3 -digit number.

A 4-digit number is called an almost-palindrome if there is a way to change exactly one digit so that the result is a 4 -digit palindrome. For example, 1337, 1501, and 1990 are 4 -digit almost-palindromes (they could become 1331 or 7337,1001 or 1551 , and 1991), but 1234, 0991 , and 1331 are not. The issue with 0991 is again that it is actually a 3 -digit number, and the issue with 1331 is that if you change any digit, then it becomes a non-palindrome.
How many 4-digit almost-palindromes are there?

