Extremal Combinatorics: Homework 3
 Due Friday April 29, in class

1. Let $f(k, n)$ be the maximum number of edges in an n-vertex graph $G=(V, E)$ whose edge set is the union of k induced matchings. This means $E=E_{1} \cup \ldots \cup E_{k}$, where each E_{i} is precisely $G\left[V_{i}\right]$ for some subset $V_{i} \subset V$, with bisections $V_{i}=V_{i}^{\prime} \cup V_{i}^{\prime \prime}$ such that there are exactly $\left|V_{i}^{\prime}\right|$ edges in each $G\left[V_{i}\right]$, and these edges all run between distinct pairs of vertices, one in V_{i}^{\prime} and one in $V_{i}^{\prime \prime}$. Note in particular that if $E_{i}=G\left[V_{i}\right]$ is in the above partition, then G has no other edges with both endpoints in V_{i}.

Prove that $f(n, n)=o\left(n^{2}\right)$, i.e., for every $\epsilon>0$, there exists an N such that for all $n>N, f(n, n) \leq \epsilon n^{2}$.
2. Show that for every $\epsilon>0$, there exist $c, N>0$ such that the following holds for every $n>N$. Every n-vertex graph with at least $\left(\frac{1}{8}+\epsilon\right) n^{2}$ edges and independence number $\alpha<c n$ must contain a copy of K_{4}.
3. Let G be an n-vertex graph with the property that for every pair of distinct vertices $\{x, y\}$, the number of vertices z which are adjacent to both x and y is odd. Prove that n, the number of vertices of G, must also be odd.

