## Putnam $\Sigma.4$

## Po-Shen Loh

## 20 September 2015

## 1 Problems

**Putnam 2002/A4.** In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty  $3 \times 3$  matrix. Player 0 counters with a 0 in a vacant position, and play continues in turn until the  $3 \times 3$  matrix is completed with five 1's and four 0's. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?

**Putnam 2002/A5.** Define a sequence by  $a_0 = 1$ , together with the rules  $a_{2n+1} = a_n$  and  $a_{2n+2} = a_n + a_{n+1}$  for each integer  $n \ge 0$ . Prove that every positive rational number appears in the set

$$\left\{\frac{a_{n-1}}{a_n}: n \ge 1\right\} = \left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \dots\right\}$$

**Putnam 2002/A6.** Fix an integer  $b \ge 2$ . Let f(1) = 1, f(2) = 2, and for each  $n \ge 3$ , define f(n) = nf(d), where d is the number of base-b digits of n. For which values of b does

$$\sum_{n=1}^{\infty} \frac{1}{f(n)}$$

converge?