Putnam E.11

Po-Shen Loh

11 November 2015

1 Problems

Putnam 1990/B1. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} [(f(t))^{2} + (f'(t))^{2}] dt + 1990.$$

Putnam 1990/B2. Prove that for |x| < 1, |z| > 1,

$$1 + \sum_{j=1}^{\infty} (1 + x^j) P_j = 0,$$

where P_j is

$$\frac{(1-z)(1-zx)(1-zx^2)\cdots(1-zx^{j-1})}{(z-x)(z-x^2)(z-x^3)\cdots(z-x^j)}.$$

Putnam 1990/B3. Let S be a set of 2×2 integer matrices whose entries a_{ij} (1) are all squares of integers and, (2) satisfy $a_{ij} \leq 200$. Show that if S has more than 50387 (= $15^4 - 15^2 - 15 + 2$) elements, then it has two elements that commute.