Putnam E.06

Po-Shen Loh

7 October 2015

1 Problems

- **Putnam 1992/B1.** Let S be a set of n distinct real numbers. Let A_S be the set of numbers that occur as averages of two distinct elements of S. For a given $n \ge 2$, what is the smallest possible number of elements in A_S ?
- **Putnam 1992/B2.** For nonnegative integers n and k, define Q(n,k) to be the coefficient of x^k in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that

$$Q(n,k) = \sum_{j=0}^{k} \binom{n}{j} \binom{n}{k-2j}.$$

Putnam 1992/B3. For any pair (x, y) of real numbers, a sequence $(a_n(x, y))_{n \ge 0}$ is defined as follows:

$$a_0(x,y) = x$$
,
 $a_{n+1}(x,y) = \frac{(a_n(x,y))^2 + y^2}{2}$, for $n \ge 0$.

Find the area of the region $\{(x,y): (a_n(x,y))_{n\geq 0} \text{ converges}\}.$