8. Recursions

Po-Shen Loh
CMU Putnam Seminar, Fall 2015

1 Classical results

Tilings. Determine the number of ways to tile a 1×10 strip using only 1×1 or 1×2 tiles.
Catalan numbers. Find a closed-form expression for the number of valid sequences containing n pairs of parantheses. For example, when $n=2$, there are 2 valid sequences: ()() and $(())$. The sequence ()$)$ (is not valid.

Fibonacci formula. For all positive integers n, the n-th Fibonacci number is the closest integer to $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)$.

2 Problems

1. Go to Scaife 125 at $8: 45 \mathrm{am}$ on Saturday.
2. Prove that for any $n \geq 1$, a $2^{n} \times 2^{n}$ checkerboard with any 1×1 square removed can be tiled by L-shaped triominoes.
3. How many sequences of 1 's and 3 's sum to 16 ? (Examples of such sequences are $\{1,3,3,3,3,3\}$ and $\{1,3,1,3,1,3,1,3\}$.)
4. A sequence is defined by $a_{0}=-1, a_{1}=0$, and

$$
a_{n+1}=a_{n}^{2}-(n+1)^{2} a_{n-1}-1
$$

for all positive integers n. Find a_{100}.
5. A type 1 sequence is a sequence with each term 0 or 1 which does not have $0,1,0$ as consecutive terms. A type 2 sequence is a sequence with each term 0 or 1 which does not have $0,0,1,1$ or $1,1,0,0$ as consecutive terms. Show that there are twice as many type 2 sequences of length $n+1$ as type 1 sequences of length n.
6. For each positive integer n, let S_{n} denote the total number of squares in an $n \times n$ square grid. Thus $S_{1}=1$ and $S_{2}=5$, because a 2×2 square grid has four 1×1 squares and one 2×2 square. Find a recurrence relation for S_{n}, and use it to calculate the total number of squares on a chess board (i.e. determine S_{8}).
7. How about the number of rectangles?
8. Let F_{n} be the Fibonacci sequence with $F_{0}=F_{1}=1$. Evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n-1} F_{n+1}}
$$

9. For n a positive integer, define $f_{1}(n)=n$, and then for each i, let $f_{i+1}(n)=f_{i}(n)^{f_{i}(n)}$. Determine $f_{100}(75) \bmod 17$.
10. Define the function $f:(0,1) \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}x+\frac{1}{2} & \text { if } x<\frac{1}{2} \\ x^{2} & \text { if } x \geq \frac{1}{2}\end{cases}
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences a_{n} and b_{n} by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right), b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there exists a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0 .
$$

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

