Putnam $\Sigma.11$

Po-Shen Loh

2 November 2014

1 Problems

- **Putnam 2006/B4.** Let Z denote the set of points in \mathbb{R}^n whose coordinates are 0 or 1. (Thus Z has 2^n elements, which are the vertices of a unit hypercube in \mathbb{R}^n .) Given a vector subspace V of \mathbb{R}^n , let Z(V) denote the number of members of Z that lie in V. Let k be given, $0 \le k \le n$. Find the maximum, over all vector subspaces $V \subseteq \mathbb{R}^n$ of dimension k, of the number of points in $V \cap Z$. [Editorial note: the proposers probably intended to write Z(V) instead of "the number of points in $V \cap Z$ ", but this changes nothing.]
- **Putnam 2006/B5.** For each continuous function $f : [0,1] \to \mathbb{R}$, let $I(f) = \int_0^1 x^2 f(x) dx$ and $J(x) = \int_0^1 x (f(x))^2 dx$. Find the maximum value of I(f) J(f) over all such functions f.

Putnam 2006/B6. Let k be an integer greater than 1. Suppose $a_0 > 0$, and define

$$a_{n+1} = a_n + \frac{1}{\sqrt[k]{a_n}}$$

for n > 0. Evaluate

$$\lim_{n \to \infty} \frac{a_n^{k+1}}{n^k}$$