Putnam 5.7

Po-Shen Loh

5 October 2014

1 Problems

Putnam 1982/A4. Consider the system of differential equations

$$
\begin{aligned}
& y^{\prime}=-z^{3} \\
& z^{\prime}=y^{3}
\end{aligned}
$$

where y and z are functions from $\mathbb{R} \rightarrow \mathbb{R}$, and y^{\prime} denotes the derivative of y with respect to its variable, etc. Suppose that with initial conditions $y(0)=1, z(0)=0$, the system of differential equations has a unique solution $y=f(x), z=g(x)$ for all real x. Prove that $f(x)$ and $g(x)$ are both periodic with the same period.

Putnam 1982/A5. Let a, b, c, d be positive integers satisfying $a+c \leq 1982$ and $\frac{a}{b}+\frac{c}{d}<1$. Prove that $1-\frac{a}{b}-\frac{c}{d}>\frac{1}{1983^{3}}$.

Putnam 1982/A6. Let a_{i} be real numbers such that $\sum_{1}^{\infty} a_{i}=1$ and $\left|a_{1}\right|>\left|a_{2}\right|>\left|a_{3}\right|>\cdots$. Suppose that f is a bijection from the positive integers to itself, and

$$
|f(i)-i|\left|a_{i}\right| \rightarrow 0
$$

as $i \rightarrow \infty$. Prove or disprove that $\sum_{1}^{\infty} a_{f(i)}=1$.

