Putnam $\Sigma.6$

Po-Shen Loh

28 September 2014

1 Problems

Putnam 1983/B4. Let $f(n) = n + \lfloor \sqrt{n} \rfloor$. Prove that for any positive integer *m*, the sequence *m*, f(m), $f(f(m)), f(f(f(m))), \ldots$, contains at least one perfect square.

Putnam 1983/B5. Let ||x|| denote the distance from x to the nearest integer. Determine

$$\frac{1}{n}\int_{1}^{n}\|n/x\|dx.$$

You may assume that

$$\prod_{1}^{\infty} \frac{2n}{2n-1} \frac{2n}{2n+1} = \frac{\pi}{2}.$$

Putnam 1983/B6. Let α be a complex (2^n+1) -th root of unity. Prove that there always exist polynomials p(x) and q(x) with integer coefficients, such that

$$p(\alpha)^2 + q(\alpha)^2 = -1.$$