Putnam 5.6

Po-Shen Loh

28 September 2014

1 Problems

Putnam 1983/B4. Let $f(n)=n+\lfloor\sqrt{n}\rfloor$. Prove that for any positive integer m, the sequence $m, f(m)$, $f(f(m)), f(f(f(m))), \ldots$, contains at least one perfect square.

Putnam 1983/B5. Let $\|x\|$ denote the distance from x to the nearest integer. Determine

$$
\frac{1}{n} \int_{1}^{n}\|n / x\| d x
$$

You may assume that

$$
\prod_{1}^{\infty} \frac{2 n}{2 n-1} \frac{2 n}{2 n+1}=\frac{\pi}{2}
$$

Putnam 1983/B6. Let α be a complex $\left(2^{n}+1\right)$-th root of unity. Prove that there always exist polynomials $p(x)$ and $q(x)$ with integer coefficients, such that

$$
p(\alpha)^{2}+q(\alpha)^{2}=-1
$$

