Putnam $\Sigma.4$

Po-Shen Loh

14 September 2014

1 Problems

- **Putnam 1984/B4.** Find all continuous functions $f : [0, \infty) \to \mathbb{R}$ such that (i) for every x > 0, f(x) > 0, and (ii) for all a > 0, the centroid of the region under the curve y = f(x) between $0 \le x \le a$ has y-coordinate equal to the average value of f(x) on [0, a].
- **Putnam 1984/B5.** Let f(n) be the number of 1's in the binary expression for n. Let $g(m) = \pm 0^m \pm 1^m \pm 2^m \pm \cdots \pm (2^m 1)^m$, where we take the sign + for k^m iff f(k) is even. Show that g(m) can be written in the form $(-1)^m a^{p(m)}(q(m))!$ where a is an integer and p and q are polynomials.
- **Putnam 1984/B6.** Define a sequence of convex polygons P_n as follows. P_0 is an equilateral triangle of side 1, and P_{n+1} is obtained from P_n by cutting off the corners 1/3 of the way along each side. For example, P_1 is a regular hexagon of side 1/3. Find $\lim_{n\to\infty} \operatorname{area}(P_n)$.