Putnam $\Sigma .2$

Po-Shen Loh

31 August 2014

1 Problems

Putnam 1984/A4. A convex pentagon inscribed in a circle radius 1 has two perpendicular diagonals which intersect inside the pentagon. What is the maximum area the pentagon can have?

Putnam 1984/A5. Let V be the pyramidal region $x, y, z \geq 0, x+y+z \leq 1$. Evaluate

$$
\int_{V} x y^{9} z^{8}(1-x-y-z)^{4} d x d y d z
$$

Putnam 1984/A6. Let $f(n)$ be the last non-zero digit in the decimal representation of n !. Show that for distinct integers $a_{i} \geq 0, f\left(5^{a_{1}}+5^{a_{2}}+\cdots+5^{a_{r}}\right)$ depends only on the sum $a_{1}+\cdots+a_{r}=a$. Write the value as $g(a)$. Find the smallest period for g, or show that it is not periodic.

