Putnam $\Sigma .2$

Po-Shen Loh

31 August 2014

1 Problems

Putnam 1985/B4. Let C be the unit circle $x^{2}+y^{2}=1$. A point P is chosen randomly on the circumference C and another point Q is chosen randomly from the interior of C (these points are chosen independently and uniformly over their domains). Let R be the rectangle with sides parallel to the x and y-axes with diagonal $P Q$. What is the probability that no point of R lies outside of C ?

Putnam 1985/B5. Evaluate

$$
\int_{0}^{\infty} t^{-1 / 2} e^{-1985\left(t+t^{-1}\right)} d t
$$

You may assume that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Putnam 1985/B6. Let G be a finite set of real $n \times n$ matrices $\left\{M_{i}\right\}, 1 \leq i \leq r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}\left(M_{i}\right)=0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^{r} M_{i}$ is the $n \times n$ zero matrix.

