Putnam E.15

Po-Shen Loh

3 December 2014

1 Problems

- **Putnam 2005/A1.** Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)
- **Putnam 2005/A2.** Let $\mathbf{S} = \{(a,b)|a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ in sequence such that
 - (i) $p_i \in \mathbf{S}$,
 - (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
 - (iii) for each $p \in \mathbf{S}$ there is a unique *i* such that $p_i = p$. How many rook tours are there that begin at (1,1) and end at (n,1)?

(An example of such a rook tour for n = 5 was depicted in the original.)

Putnam 2005/A3. Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.