Putnam E.06

Po-Shen Loh

1 October 2014

1 Problems

Putnam 2000/B1. Let a_j, b_j, c_j be integers for $1 \le j \le N$. Assume for each j, at least one of a_j, b_j, c_j is odd. Show that there exist integers r, s, t such that $ra_j + sb_j + tc_j$ is odd for at least 4N/7 values of $j, 1 \le j \le N$.

Putnam 2000/B2. Prove that the expression

$$\frac{\gcd(m,n)}{n}\binom{n}{m}$$

is an integer for all pairs of integers $n \ge m \ge 1$.

Putnam 2000/B3. Let $f(t) = \sum_{j=1}^{N} a_j \sin(2\pi j t)$, where each a_j is real and a_N is not equal to 0. Let N_k denote the number of zeroes (including multiplicities) of $\frac{d^k f}{dt^k}$, in the range [0,1). Prove that

 $N_0 \le N_1 \le N_2 \le \cdots$ and $\lim_{k \to \infty} N_k = 2N$.