7. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2014

1 Well-known statements

- **Infimum and supremum.** The *infimum* of a set of numbers $S \subseteq \mathbb{R}$ is the largest real number x such that $x \leq s$ for all $s \in S$. The *supremum* is the smallest real number y such that $y \geq s$ for all $s \in S$.
- Monotone sequence. Let $a_1 \ge a_2 \ge a_3 \ge \cdots$ be a sequence of non-negative numbers. Then $\lim_{n\to\infty} a_n$ exists.
- Alternating series. Let a_1, a_2, \ldots be a sequence of real numbers which is decreasing in absolute value, converging to 0, and alternating in sign. Then the series $\sum_{i=1}^{\infty} a_i$ converges.
- **Conditionally convergent.** Let a_1, a_2, \ldots be a sequence of real numbers such that the series $\sum_{i=1}^{\infty} a_i$ converges to a finite number, but $\sum_{i=1}^{\infty} |a_i| = \infty$. This is called a *conditionally convergent* series. Then, for any real number r, the sequence can be rearranged so that the series converges to r. (Formally, there exists a bijection $\sigma : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $\lim_{n\to\infty} \sum_{i=1}^n a_{\sigma(i)} = r$.)

Frontier. All of these series diverge: $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n \log n}$, $\sum_{n=1}^{\infty} \frac{1}{n \log n \log \log n}$,

2 Problems

- 1. Consider the following experiment using a fair coin: toss the coin twice, and consider it *success* if both times turned up heads. The success probability of that experiment is $\frac{1}{4}$. Devise an experiment which uses only tosses of a fair coin, but which has success probability $\frac{1}{3}$.
- 2. Suppose that a_1, a_2, \ldots is a sequence of real numbers such that for each k, a_k is either $\frac{1}{k}$ or $-\frac{1}{k}$, and a_k has the same sign as a_{k+8} . Show that if four of a_1, a_2, \ldots, a_8 are positive, then $\sum_{k=1}^{\infty} a_k$ converges. Is the converse true?
- 3. Prove that a sequence of positive numbers, each of which is less than the average of the previous two, is convergent.
- 4. Prove that every sequence of real numbers contains a monotone subsequence. Formally, show that for every sequence a_1, a_2, \ldots of real numbers, there is a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that f(i) < f(j) for all i < j, and either $a_{f(1)} \leq a_{f(2)} \leq a_{f(3)} \leq \cdots$ or $a_{f(1)} \geq a_{f(2)} \geq a_{f(3)} \geq \cdots$.
- 5. Prove that the equation $x^{x^{x'}} = 2$ is satisfied by $x = \sqrt{2}$, but that the equation $x^{x^{x'}} = 4$ has no solution. What is the "break-point"?
- 6. Given a convergent series of positive terms, $\sum_{k=1}^{\infty} a_k$, does the series $\sum_{k=1}^{\infty} \frac{a_1 + \dots + a_k}{k}$ always converge? How about the series $\sum_{k=1}^{\infty} \sqrt[k]{a_1 \times \dots \times a_k}$?
- 7. Let a_1, a_2, \ldots be a sequence of positive real numbers satisfying $a_n < a_{n+1} + a_{n^2}$ for all n. Prove that $\sum a_n$ diverges.

8. Let a_i be real numbers such that $\sum_{1}^{\infty} a_i = 1$ and $|a_1| > |a_2| > |a_3| > \cdots$. Suppose that f is a bijection from the positive integers to itself, and

$$|f(i) - i||a_i| \to 0$$

as $i \to \infty$. Prove or disprove that $\sum_{1}^{\infty} a_{f(i)} = 1$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.