Putnam $\sum .15$

Po-Shen Loh

1 December 2013

1 Problems

Putnam 2009/A1. Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?

Putnam 2009/A2. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
& f^{\prime}=2 f^{2} g h+\frac{1}{g h}, \quad f(0)=1 \\
& g^{\prime}=f g^{2} h+\frac{4}{f h}, \quad g(0)=1 \\
& h^{\prime}=3 f g h^{2}+\frac{1}{f g}, \quad h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .
Putnam 2009/A3. Let d_{n} be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \ldots, \cos \left(n^{2}\right)$. For example, d_{3} is the determinant of the matrix

$$
\left(\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right)
$$

Note: The argument of cosine is always in radians, not degrees. Evaluate $\lim _{n \rightarrow \infty} d_{n}$.
Putnam 2009/A4. Let S be a set of rational numbers such that
(a) $0 \in S$;
(b) If $x \in S$, then $x+1 \in S$ and $x-1 \in S$; and
(c) If $x \in S$ and $x \neq\{0,1\}$, then $\frac{1}{x(x-1)} \in S$.

Must S contain all rational numbers?
Putnam 2009/A5. Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

Putnam 2009/A6. Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y, b=\int_{0}^{1} f(1, y) d y$, $c=\int_{0}^{1} f(x, 0) d x$, and $d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \quad \text { and } \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c
$$

