Putnam $\Sigma.14$

Po-Shen Loh

24 November 2013

1 Problems

Putnam 1985/A4. Define a sequence $\{a_i\}$ by $a_1 = 3$ and $a_{i+1} = 3^{a_i}$ for $i \ge 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_i ?

Putnam 1985/A5. Let $I_m = \int_0^{2\pi} \cos(x) \cos(2x) \cdots \cos(mx) dx$. For which integers $m, 1 \le m \le 10$ is $I_m \ne 0$?

Putnam 1985/A6. If $p(x) = a_0 + a_1x + \cdots + a_mx^m$ is a polynomial with real coefficients a_i , then set

$$\Gamma(p(x)) = a_0^2 + a_1^2 + \dots + a_m^2.$$

Let $f(x) = 3x^2 + 7x + 2$. Find, with proof, a polynomial g(x) with real coefficients such that

(i) g(0) = 1, and (ii) $\Gamma(f(x)^n) = \Gamma(g(x)^n)$

for every integer $n \ge 1$.