Putnam 2.13

Po-Shen Loh

17 November 2013

1 Problems

Putnam 1986/B4. For a positive real number r, let $G(r)$ be the minimum value of $\left|r-\sqrt{m^{2}+2 n^{2}}\right|$ for all integers m and n. Prove or disprove the assertion that $\lim _{r \rightarrow \infty} G(r)$ exists and equals 0 .

Putnam 1986/B5. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$. Let $p(x, y, z), q(x, y, z), r(x, y, z)$ be polynomials with real coefficients satisfying

$$
f(p(x, y, z), q(x, y, z), r(x, y, z))=f(x, y, z)
$$

Prove or disprove the assertion that the sequence p, q, r consists of some permutation of $\pm x, \pm y, \pm z$, where the number of minus signs is 0 or 2 .

Putnam 1986/B6. Suppose A, B, C, D are $n \times n$ matrices with entries in a field F, satisfying the conditions that $A B^{T}$ and $C D^{T}$ are symmetric and $A D^{T}-B C^{T}=I$. Here I is the $n \times n$ identity matrix, and if M is an $n \times n$ matrix, M^{T} is its transpose. Prove that $A^{T} D-C^{T} B=I$.

