Putnam $\Sigma.12$

Po-Shen Loh

10 November 2013

1 Problems

Putnam 1986/A4. A *transversal* of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let f(n) be the number of $n \times n$ matrices A satisfying the following two conditions:

- (a) Each entry $\alpha_{i,j}$ of A is in the set $\{-1, 0, 1\}$.
- (b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$A = \left(\begin{array}{rrr} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

Determine with proof a formula for f(n) of the form

$$f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,$$

where the a_i 's and b_i 's are rational numbers.

Putnam 1986/A5. Suppose $f_1(x), f_2(x), \ldots, f_n(x)$ are functions of n real variables $x = (x_1, \ldots, x_n)$ with continuous second-order partial derivatives everywhere on \mathbb{R}^n . Suppose further that there are constants c_{ij} such that

$$\frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i} = c_{ij}$$

for all i and j, $1 \le i \le n$, $1 \le j \le n$. Prove that there is a function g(x) on \mathbb{R}^n such that $f_i + \partial g/\partial x_i$ is linear for all $i, 1 \le i \le n$. Recall that a linear function is one of the form

$$a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n.$$

Putnam 1986/A6. Let a_1, a_2, \ldots, a_n be real numbers, and let b_1, b_2, \ldots, b_n be distinct positive integers. Suppose that there is a polynomial f(x) satisfying the identity

$$(1-x)^n f(x) = 1 + \sum_{i=1}^n a_i x^{b_i}.$$

Find a simple expression (not involving any sums) for f(1) in terms of b_1, b_2, \ldots, b_n and n (but independent of a_1, a_2, \ldots, a_n).