Putnam $\sum .11$

Po-Shen Loh

3 November 2013

1 Problems

Putnam 1987/B4. Let $\left(x_{1}, y_{1}\right)=(0.8,0.6)$ and let $x_{n+1}=x_{n} \cos y_{n}-y_{n} \sin y_{n}$ and $y_{n+1}=x_{n} \sin y_{n}+$ $y_{n} \cos y_{n}$ for $n=1,2,3, \ldots$. For each of $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$, prove that the limit exists and find it or prove that the limit does not exist.

Putnam 1987/B5. Let O_{n} be the n-dimensional vector $(0,0, \cdots, 0)$. Let M be a $2 n \times n$ matrix of complex numbers such that whenever $\left(z_{1}, z_{2}, \ldots, z_{2 n}\right) M=O_{n}$, with complex z_{i}, not all zero, then at least one of the z_{i} is not real. Prove that for arbitrary real numbers $r_{1}, r_{2}, \ldots, r_{2 n}$, there are complex numbers $w_{1}, w_{2}, \ldots, w_{n}$ such that

$$
\operatorname{re}\left[M\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)\right]=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{2 n}
\end{array}\right) .
$$

(Note: if C is a matrix of complex numbers, $\operatorname{re}(C)$ is the matrix whose entries are the real parts of the entries of C.)

Putnam 1987/B6. Let F be the field of p^{2} elements, where p is an odd prime. Suppose S is a set of $\left(p^{2}-1\right) / 2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and $-a$ is in S. Let N be the number of elements in the intersection $S \cap\{2 a: a \in S\}$. Prove that N is even.

IMC 1996/B1 (Bonus random analysis problem - work on if finished early). Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Let x_{1}, x_{2}, \ldots be a sequence satisfying $x_{n+1}=f\left(x_{n}\right)$ for all $n \geq 1$, and suppose that

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0 .
$$

Prove that the entire sequence x_{1}, x_{2}, \ldots converges.

