Putnam $\Sigma.11$

Po-Shen Loh

3 November 2013

1 Problems

- **Putnam 1987/B4.** Let $(x_1, y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n y_n \sin y_n$ and $y_{n+1} = x_n \sin y_n + y_n \cos y_n$ for $n = 1, 2, 3, \ldots$ For each of $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.
- **Putnam 1987/B5.** Let O_n be the *n*-dimensional vector $(0, 0, \dots, 0)$. Let M be a $2n \times n$ matrix of complex numbers such that whenever $(z_1, z_2, \dots, z_{2n})M = O_n$, with complex z_i , not all zero, then at least one of the z_i is not real. Prove that for arbitrary real numbers r_1, r_2, \dots, r_{2n} , there are complex numbers w_1, w_2, \dots, w_n such that

$$\operatorname{re}\left[M\left(\begin{array}{c}w_{1}\\\vdots\\w_{n}\end{array}\right)\right]=\left(\begin{array}{c}r_{1}\\\vdots\\r_{2n}\end{array}\right).$$

(Note: if C is a matrix of complex numbers, re(C) is the matrix whose entries are the real parts of the entries of C.)

- **Putnam 1987/B6.** Let F be the field of p^2 elements, where p is an odd prime. Suppose S is a set of $(p^2 1)/2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and -a is in S. Let N be the number of elements in the intersection $S \cap \{2a : a \in S\}$. Prove that N is even.
- IMC 1996/B1 (Bonus random analysis problem work on if finished early). Let $f : [0,1] \to [0,1]$ be a continuous function. Let x_1, x_2, \ldots be a sequence satisfying $x_{n+1} = f(x_n)$ for all $n \ge 1$, and suppose that

$$\lim_{n \to \infty} (x_{n+1} - x_n) = 0.$$

Prove that the entire sequence x_1, x_2, \ldots converges.