# Putnam 5.09 

Po-Shen Loh

20 October 2013

## 1 Problems

Putnam 1987/A4. Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that

$$
P(u x, u y, u z)=u^{2} F(y-x, z-x) \quad \text { for all real } x, y, z, u
$$

and such that $P(1,0,0)=4, P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A, B, C$ be complex numbers with $P(A, B, C)=0$ and $|B-A|=10$. Find $|C-A|$.

Putnam 1987/A5. Let

$$
\vec{G}(x, y)=\left(\frac{-y}{x^{2}+4 y^{2}}, \frac{x}{x^{2}+4 y^{2}}, 0\right) .
$$

Prove or disprove that there is a vector-valued function

$$
\vec{F}(x, y, z)=(M(x, y, z), N(x, y, z), P(x, y, z))
$$

with the following properties:
(i) $M, N, P$ have continuous partial derivatives for all $(x, y, z) \neq(0,0,0)$;
(ii) $\operatorname{Curl} \vec{F}=\overrightarrow{0}$ for all $(x, y, z) \neq(0,0,0)$;
(iii) $\vec{F}(x, y, 0)=\vec{G}(x, y)$.

Putnam 1987/A6. For each positive integer $n$, let $a(n)$ be the number of zeroes in the base 3 representation of $n$. For which positive real numbers $x$ does the series

$$
\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^{3}}
$$

converge?

