Putnam 5.08

Po-Shen Loh

13 October 2013

1 Problems

Putnam 1988/B4. Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)}$.

Putnam 1988/B5. For positive integers n, let M_{n} be the $2 n+1$ by $2 n+1$ skew-symmetric matrix for which each entry in the first n subdiagonals below the main diagonal is 1 and each of the remaining entries below the main diagonal is -1 . Find, with proof, the rank of M_{n}. (According to one definition, the rank of a matrix is the largest k such that there is a $k \times k$ submatrix with nonzero determinant.)
One may note that

$$
\begin{aligned}
M_{1} & =\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right) \\
M_{2} & =\left(\begin{array}{ccccc}
0 & -1 & -1 & 1 & 1 \\
1 & 0 & -1 & -1 & 1 \\
1 & 1 & 0 & -1 & -1 \\
-1 & 1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Putnam 1988/B6. Prove that there exist an infinite number of ordered pairs (a, b) of integers such that for every positive integer t, the number $a t+b$ is a triangular number if and only if t is a triangular number. (The triangular numbers are the $t_{n}=n(n+1) / 2$ with n in $\{0,1,2, \ldots\}$.)

