# Putnam E .06 

Po-Shen Loh

29 September 2013

## 1 Problems

Putnam 1989/B4. Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?

Putnam 1989/B5. Label the vertices of a trapezoid $T$ (quadrilateral with two parallel sides) inscribed in the unit circle as $A, B, C, D$ so that $A B$ is parallel to $C D$ and $A, B, C, D$ are in counterclockwise order. Let $s_{1}, s_{2}$, and $d$ denote the lengths of the line segments $A B, C D$, and $O E$, where E is the point of intersection of the diagonals of $T$, and $O$ is the center of the circle. Determine the least upper bound of $\frac{s_{1}-s_{2}}{d}$ over all such $T$ for which $d \neq 0$, and describe all cases, if any, in which it is attained.

Putnam 1989/B6. Let $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be a point chosen at random from the $n$-dimensional region defined by $0<x_{1}<x_{2}<\cdots<x_{n}<1$. Let $f$ be a continuous function on [0,1] with $f(1)=0$. Set $x_{0}=0$ and $x_{n+1}=1$. Show that the expected value of the Riemann sum

$$
\sum_{i=0}^{n}\left(x_{i+1}-x_{i}\right) f\left(x_{i+1}\right)
$$

is $\int_{0}^{1} f(t) P(t) d t$, where $P$ is a polynomial of degree $n$, independent of $f$, with $0 \leq P(t) \leq 1$ for $0 \leq t \leq 1$.

