Putnam $\Sigma.06$

Po-Shen Loh

29 September 2013

1 Problems

- Putnam 1989/B4. Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?
- **Putnam 1989/B5.** Label the vertices of a trapezoid T (quadrilateral with two parallel sides) inscribed in the unit circle as A, B, C, D so that AB is parallel to CD and A, B, C, D are in counterclockwise order. Let s_1 , s_2 , and d denote the lengths of the line segments AB, CD, and OE, where E is the point of intersection of the diagonals of T, and O is the center of the circle. Determine the least upper bound of $\frac{s_1-s_2}{d}$ over all such T for which $d \neq 0$, and describe all cases, if any, in which it is attained.
- **Putnam 1989/B6.** Let $(x_1, x_2, ..., x_n)$ be a point chosen at random from the *n*-dimensional region defined by $0 < x_1 < x_2 < \cdots < x_n < 1$. Let f be a continuous function on [0, 1] with f(1) = 0. Set $x_0 = 0$ and $x_{n+1} = 1$. Show that the expected value of the Riemann sum

$$\sum_{i=0}^{n} (x_{i+1} - x_i) f(x_{i+1})$$

is $\int_0^1 f(t)P(t) dt$, where P is a polynomial of degree n, independent of f, with $0 \le P(t) \le 1$ for $0 \le t \le 1$.