Putnam $\Sigma.04$

Po-Shen Loh

8 September 2013

1 Problems

- **Putnam 1989/A4.** If α is an irrational number, $0 < \alpha < 1$, is there a finite game with an honest coin such that the probability of one player winning the game is α ? (An honest coin is one for which the probability of heads and the probability of tails are both $\frac{1}{2}$. A game is finite if with probability 1 it must end in a finite number of moves.)
- **Putnam 1989/A5.** Let m be a positive integer and let \mathcal{G} be a regular (2m + 1)-gon inscribed in the unit circle. Show that there is a positive constant A, independent of m, with the following property. For any point p inside \mathcal{G} there are two distinct vertices v_1 and v_2 of \mathcal{G} such that

$$||p - v_1| - |p - v_2|| < \frac{1}{m} - \frac{A}{m^3}.$$

Here |s - t| denotes the distance between the points s and t.

Putnam 1989/A6. Let $\alpha = 1 + a_1 x + a_2 x^2 + \cdots$ be a formal power series with coefficients in the field of two elements. Let

$$a_n = \begin{cases} 1 & \text{if every block of zeros in the binary expansion of} \\ n \text{ has an even number of zeros in the block} \\ 0 & \text{otherwise.} \end{cases}$$

(For example, $a_{36} = 1$ because $36 = 100100_2$ and $a_{20} = 0$ because $20 = 10100_2$.) Prove that $\alpha^3 + x\alpha + 1 = 0$.