Putnam 5.04

Po-Shen Loh

8 September 2013

1 Problems

Putnam 1989/A4. If α is an irrational number, $0<\alpha<1$, is there a finite game with an honest coin such that the probability of one player winning the game is α ? (An honest coin is one for which the probability of heads and the probability of tails are both $\frac{1}{2}$. A game is finite if with probability 1 it must end in a finite number of moves.)

Putnam 1989/A5. Let m be a positive integer and let \mathcal{G} be a regular $(2 m+1)$-gon inscribed in the unit circle. Show that there is a positive constant A, independent of m, with the following property. For any point p inside \mathcal{G} there are two distinct vertices v_{1} and v_{2} of \mathcal{G} such that

$$
\left|\left|p-v_{1}\right|-\left|p-v_{2}\right|\right|<\frac{1}{m}-\frac{A}{m^{3}} .
$$

Here $|s-t|$ denotes the distance between the points s and t.
Putnam 1989/A6. Let $\alpha=1+a_{1} x+a_{2} x^{2}+\cdots$ be a formal power series with coefficients in the field of two elements. Let

$$
a_{n}= \begin{cases}1 & \text { if every block of zeros in the binary expansion of } \\ n \text { has an even number of zeros in the block } \\ 0 & \text { otherwise. }\end{cases}
$$

(For example, $a_{36}=1$ because $36=100100_{2}$ and $a_{20}=0$ because $20=10100_{2}$.) Prove that $\alpha^{3}+x \alpha+1=$ 0.

