Putnam 5.03

Po-Shen Loh

8 September 2013

1 Problems

Putnam 1990/B4. Let G be a finite group of order n generated by a and b. Prove or disprove: there is a sequence

$$
g_{1}, g_{2}, g_{3}, \ldots, g_{2 n}
$$

such that
(1) every element of G occurs exactly twice, and
(2) g_{i+1} equals $g_{i} a$ or $g_{i} b$ for $i=1,2, \ldots, 2 n$. (Interpret $g_{2 n+1}$ as g_{1}.)

Putnam 1990/B5. Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=$ $1,2,3, \ldots$ the polynomial

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

has exactly n distinct real roots?
Putnam 1990/B6. Let S be a nonempty closed bounded convex set in the plane. Let K be a line and t a positive number. Let L_{1} and L_{2} be support lines for S parallel to K_{1}, and let \bar{L} be the line parallel to K and midway between L_{1} and L_{2}. Let $B_{S}(K, t)$ be the band of points whose distance from \bar{L} is at most $(t / 2) w$, where w is the distance between L_{1} and L_{2}. What is the smallest t such that

$$
S \cap \bigcap_{K} B_{S}(K, t) \neq \emptyset
$$

for all $S ?$ (K runs over all lines in the plane.)

