Putnam $\Sigma.03$

Po-Shen Loh

8 September 2013

1 Problems

Putnam 1990/B4. Let G be a finite group of order n generated by a and b. Prove or disprove: there is a sequence

$$g_1, g_2, g_3, \ldots, g_{2n}$$

such that

(1) every element of G occurs exactly twice, and

- (2) g_{i+1} equals $g_i a$ or $g_i b$ for $i = 1, 2, \ldots, 2n$. (Interpret g_{2n+1} as g_1 .)
- **Putnam 1990/B5.** Is there an infinite sequence a_0, a_1, a_2, \ldots of nonzero real numbers such that for $n = 1, 2, 3, \ldots$ the polynomial

$$p_n(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

has exactly n distinct real roots?

Putnam 1990/B6. Let S be a nonempty closed bounded convex set in the plane. Let K be a line and t a positive number. Let L_1 and L_2 be support lines for S parallel to K_1 , and let \overline{L} be the line parallel to K and midway between L_1 and L_2 . Let $B_S(K,t)$ be the band of points whose distance from \overline{L} is at most (t/2)w, where w is the distance between L_1 and L_2 . What is the smallest t such that

$$S \cap \bigcap_{K} B_{S}(K, t) \neq \emptyset$$

for all S? (K runs over all lines in the plane.)