Putnam E. 15

Po-Shen Loh

4 Dec 2013

1 Problems

Putnam 2005/A1. Show that every positive integer is the sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)

Putnam 2005/A2. Let $S=\{(a, b): a=1,2, \ldots, n ; b=1,2,3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that
(i) $p_{i} \in S$,
(ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<3 n$,
(iii) for each $p \in S$, there is a unique i such that $p_{i}=p$.

How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?
Putnam 2005/A3. Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1 .

