Putnam E. 13

Po-Shen Loh

20 Nov 2013

1 Problems

Putnam 2006/B1. Show that the curve $x^{3}+3 x y+y^{3}=1$ contains only one set of three distinct points A, B, and C, which are vertices of an equilateral triangle, and find its area.

Putnam 2006/B2. Prove that for every set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of real numbers, there exists a non-empty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Putnam 2006/B3. Let S be a finite set of points in the plane. A linear partition of S is an unordered pair $\{A, B\}$ of subsets of S such that $A \cup B=S, A \cap B=\emptyset$, and A and B lie on opposite sides of some straight line disjoint from S (A or B may be empty). Let L_{S} be the number of linear partitions of S. For each positive integer n, find the maximum of L_{S} over all sets S of n points.

