Putnam E. 11

Po-Shen Loh

6 Nov 2013

1 Problems

Putnam 2007/B1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.

Putnam 2007/B2. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

Putnam 2007/B3. Let $x_{0}=1$ and for $n \geq 0$, let $x_{n+1}=3 x_{n}+\left\lfloor x_{n} \sqrt{5}\right\rfloor$. In particular, $x_{1}=5, x_{2}=26$, $x_{3}=136, x_{4}=712$. Find a closed-form expression for x_{2007}. $(\lfloor a\rfloor$ means the largest integer $\leq a$.

