Putnam E. 08

Po-Shen Loh

17 Oct 2013

1 Problems

Putnam 2008/A1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.

Putnam 2008/A2. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

Putnam 2008/A3. Start with a finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. If possible, choose two indices $j<k$ such that a_{j} does not divide a_{k}, and replace a_{j} and a_{k} by $\operatorname{gcd}\left(a_{j}, a_{k}\right)$ and $\operatorname{lcm}\left(a_{j}, a_{k}\right)$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made.

