Putnam E. 07

Po-Shen Loh

9 Oct 2013

1 Problems

Putnam 1978/B2. Find

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{i^{2} j+2 i j+i j^{2}}
$$

Putnam 1978/B3. Let the polynomials $p_{n}(x)$ be defined by

$$
\begin{aligned}
p_{1}(x) & =1+x \\
p_{2}(x) & =1+2 x \\
p_{2 n+1}(x) & =p_{2 n}(x)+(n+1) x \cdot p_{2 n-1}(x) \\
p_{2 n+2}(x) & =p_{2 n+1}(x)+(n+1) x \cdot p_{2 n}(x) .
\end{aligned}
$$

Let a_{n} be the largest real root of $p_{n}(x)$. Prove that a_{n} is monotonic increasing and tends to zero.
Putnam 1978/B4. Show that we can find integers a, b, c, d such that

$$
a^{2}+b^{2}+c^{2}+d^{2}=a b c+a b d+a c d+b c d
$$

and the smallest of a, b, c, d is arbitrarily large.

