Putnam E. 06

Po-Shen Loh

2 Oct 2013

1 Problems

Putnam 1978/A1. Show that every 20 -element subset of $\{1,4,7,10,13,16, \ldots, 100\}$ contains two distinct elements which sum to 104.

Putnam 1978/A2. Let A be the real $n \times n$ matrix with diagonal entries $c_{1}, c_{2}, \ldots, c_{n}$, all entries above the diagonal equal to a, and all entries below the diagonal equal to b, which is not equal to a. Prove that

$$
\operatorname{det} A=\frac{b p(a)-a p(b)}{b-a}
$$

where $p(x)=\prod_{i=1}^{n}\left(c_{i}-x\right)$.
Putnam 1978/A3. Let $p(x)=2\left(x^{6}+1\right)+4\left(x^{5}+x\right)+3\left(x^{4}+x^{2}\right)+5 x^{3}$. Which of these is the smallest?

$$
\int_{0}^{\infty} \frac{x}{p(x)} d x \quad \int_{0}^{\infty} \frac{x^{2}}{p(x)} d x \quad \int_{0}^{\infty} \frac{x^{3}}{p(x)} d x \quad \int_{0}^{\infty} \frac{x^{4}}{p(x)} d x
$$

