13. Analysis

Po-Shen Loh

CMU Putnam Seminar, Fall 2013

1 Famous results

Irrational numbers exist. There are uncountably many real numbers.

- König's lemma. Let G be a connected graph with infinitely many vertices, in which all vertex degrees are finite. Then, G contains an infinitely long path.
- Sequential compactness. Every closed and bounded subset $K \subset \mathbb{R}^n$ has the following property: every sequence x_1, x_2, \ldots of points from K contains a subsequence x_{i_1}, x_{i_2}, \ldots that converges to a point in K.
- Continuous function on compact set. If $f : \Omega \to \mathbb{R}$ is a continuous function from a compact domain Ω , then there is some $x \in \Omega$ such that $f(x) \ge f(y)$ for all $y \in \Omega$.

2 Problems

- 1. Let S be a closed subset of the plane, and suppose that its projection onto the x-axis is bounded. Prove that its projection onto the y-axis is closed.
- 2. What if the assumption of bounded-x-axis-projection is removed?
- 3. Let $f: [0,\pi] \to \mathbb{R}$ be a continuous function satisfying $\int_0^{\pi} f(x) \sin x dx = 0 = \int_0^{\pi} f(x) \cos x dx$. Show that f(x) = 0 for at least two distinct values of x in the open interval $0 < x < \pi$. (If you are stuck trying to show that there are at least two zeros, try to show that there is at least one zero first.)
- 4. Use the previous problem to show that for every convex polygon P in the plane, there are at least 3 lines ℓ such that P's centroid is on ℓ , and it is exactly halfway between the points where ℓ intersects the boundary of P.
- 5. A compact set of real numbers is one which is both closed and bounded. Show that there are compact sets A_1, A_2, \ldots of real numbers such that every compact set $K \subseteq \mathbb{R}$ is contained in some A_n (it may be contained in many A_n).
- 6. Show that if we are given compact sets A_1, A_2, \ldots of *rational* numbers, then there is always some compact set of rationals $K \subseteq \mathbb{Q}$ such that $K \not\subseteq A_n$ for all n.
- 7. Let K be a convex open set in the plane, and let $P \in K$. Suppose that no infinite ray from P is entirely contained in K. Prove that K must be bounded.
- 8. Does the previous result hold without the assumption that K is open?
- 9. Let f and g be continuous real functions with period 1. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x)g(nx)dx = \left(\int_0^1 f(x)dx\right)\left(\int_0^1 g(x)dx\right)$$

- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that for every real $\alpha > 0$, $\lim_{n \to \infty} f(n\alpha) = 0$. Prove that $\lim_{x \to \infty} f(x) = 0$.
- 11. A sequence x_1, x_2, \ldots has a *Cesaro limit* iff

$$\lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n}$$

exists. Find all functions $f:[0,1]\to \mathbb{R}$ with the property that:

 $\{x_1, x_2, \dots$ has a Cesaro limit $\} \iff \{f(x_1), f(x_2), \dots$ has a Cesaro limit $\}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.