6. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2013

1 Famous results

Cauchy-Schwarz. Let v and w be vectors in an inner product space. Then

$$
|\langle v, w\rangle|^{2} \leq\langle v, v\rangle \cdot\langle w, w\rangle
$$

with equality only if v and w are proportional.
Jensen. If f is a convex function, then f (average of x 's) \leq average of $f(x)$'s. This implies, for example, that $x^{p} y^{1-p} \leq p x+(1-p) y$.

Bieberbach, via Steiner symmetrization. Every compact set $K \subset \mathbb{R}^{n}$ satisfies

$$
\operatorname{vol}(K) \leq \operatorname{vol}\left(B_{n}\right) \cdot\left(\frac{\operatorname{diam}(K)}{2}\right)^{n}
$$

where B_{n} is the unit ball in n dimensions, and $\operatorname{diam}(K)=\max \{\operatorname{dist}(x, y): x, y \in K\}$ is the diameter of set K.

Beats. Superpositions of sine waves can form "beats":

$$
\frac{1}{2} \sin a \theta+\frac{1}{2} \sin b \theta=\sin \left(\frac{a+b}{2} \theta\right) \cos \left(\frac{a-b}{2} \theta\right) .
$$

2 Problems

1. In terms of n, determine the maximum possible value of the sum

$$
\sum_{1 \leq i<j \leq n}\left|x_{i}-x_{j}\right|
$$

where x_{1}, \ldots, x_{n} are (not necessarily distinct) real numbers in $[0,1]$.
2. Find all pairs of real numbers (α, β) for which there is a constant C such that for all positive reals x and y,

$$
x^{\alpha} y^{\beta}<C(x+y)
$$

3. Let α be a real number. Are there any continuous real-valued functions $f:[0,1] \rightarrow \mathbb{R}^{+}$such that

$$
\int_{0}^{1} f(x) d x=1, \quad \int_{0}^{1} x f(x) d x=\alpha, \text { and } \quad \int_{0}^{1} x^{2} f(x) d x=\alpha^{2} ?
$$

4. Suppose that a_{1}, \ldots, a_{n} are real numbers such that

$$
\left|\sum_{k=1}^{n} a_{k} \sin k x\right| \leq|\sin x|
$$

for all real x. Prove that

$$
\left|\sum_{k=1}^{n} k a_{k}\right| \leq 1
$$

5. Let K be a convex set in the plane with area at least π, whose boundary is a finite collection of line segments. Prove that there are points $X, Y \in K$ such that the distance between X and Y is at least 2 .
6. Let $P_{1}, P_{2}, \ldots, P_{n}$ be points on the surface of the unit sphere in \mathbb{R}^{3}, i.e., with coordinates satisfying $x^{2}+y^{2}+z^{2}=1$. Prove that

$$
\sum_{1 \leq i<j \leq n} d_{2}\left(P_{i}, P_{j}\right)^{2} \leq n^{2}
$$

where $d_{2}(X, Y)$ is the ordinary Euclidean distance between points X and Y.
7. Show that for every curve in \mathbb{R}^{2} of length 1 , there is a closed rectangle of area $\frac{1}{4}$ which covers it completely.
8. Show that a circle inscribed in a square has a larger perimeter than any other ellipse inscribed in a square.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

