4. Calculus

Po-Shen Loh

CMU Putnam Seminar, Fall 2013

1 Famous results

Mean value theorem. For every function $f:[a, b] \rightarrow \mathbb{R}$ which is continuous on $[a, b]$ and differentiable in (a, b), there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Cauchy's mean value theorem. For every functions $f, g:[a, b] \rightarrow \mathbb{R}$ which are continuous on $[a, b]$ and differentiable in (a, b), there exists $\xi \in(a, b)$ such that

$$
(f(b)-f(a)) g^{\prime}(\xi)=(g(b)-g(a)) f^{\prime}(\xi)
$$

If it happens that neither denominator is zero, then this is equivalent to the nicer expression:

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Taylor's theorem, with remainder. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and k-times-differentiable on (a, b), and let c be a real number in the interval (a, b). Then, for every $x \in(a, b)$, there there exists a ξ between c and x such that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots+\frac{f^{(k-1)}(c)}{(k-1)!}(x-c)^{k-1}+\frac{f^{(k)}(\xi)}{k!}(x-c)^{k}
$$

Dirac delta "function". Physicists find the following "function" useful: $\delta(x)=0$ for every real number x except $x=0$, where $\delta(0)=\infty$, and

$$
\int_{-\infty}^{\infty} \delta(x) d x=1
$$

2 Problems

1. Determine

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n^{2}} \frac{n}{n^{2}+i^{2}}
$$

2. Prove that

$$
\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}}=\frac{22}{7}-\pi
$$

3. Let $b \geq 2$ be a real number, and let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable function which satisfies $|f(x)| \leq 1$ and $\left|f^{\prime \prime}(x)\right| \leq 1$ for all $x \in[0, b]$. Prove that $\left|f^{\prime}(x)\right| \leq 2$ for all $x \in[0, b]$.
4. Is there a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $\epsilon>0$,

$$
\int_{-\epsilon}^{\epsilon} f(x) d x \geq 1 ?
$$

5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $\int_{-\infty}^{\infty} f(x) d x$ exists. Prove that

$$
\int_{-\infty}^{\infty} f\left(x-\frac{1}{x}\right) d x=\int_{-\infty}^{\infty} f(x) d x
$$

6. Prove that

$$
\int_{0}^{1} x^{x} d x=1-\frac{1}{2^{2}}+\frac{1}{3^{3}}-\frac{1}{4^{4}}+\cdots
$$

7. Let $a \geq b \geq c>0$ be real numbers. Define the random variables X, Y, Z as follows: let X be uniformly distributed on the interval $[0, a]$, let Y be uniform on $[0, b]$, and let Z be uniform on $[0, c]$. Calculate the expected value of $\min \{X, Y, Z\}$.
8. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be twice continuously differentiable, with $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=-\infty$ and $\lim _{x \rightarrow 0^{+}} f^{\prime \prime}(x)=$ $+\infty$. Prove that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{f^{\prime}(x)}=0
$$

9. Let \mathbb{D} be the closed unit disk $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ in \mathbb{R}^{2}, and suppose that $f: \mathbb{D} \rightarrow[-1,1]$ is differentiable in \mathbb{D}, with respect to each of x and y. Prove that there is a point $(a, b) \in \mathbb{D}$ such that $f_{x}(a, b)^{2}+f_{y}(a, b)^{2} \leq 16$, where f_{x} and f_{y} denote the partial derivatives of f with respect to x and y.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

