2. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2013

1 Famous results

Single-variable. Suppose that the polynomial $P(z)=a_{d} z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}$ has $d+1$ distinct zeros. Then $P(z)$ is the zero polynomial, i.e., all $a_{k}=0$. This works over any field.

Multi-variable. Let $P(x, y)=\sum_{i=0}^{d} \sum_{j=0}^{d} a_{i, j} x^{i} y^{j}$ be a polynomial, and let A_{x}, A_{y} be two (not necessarily distinct) sets of size $d+1$, such that $P(x, y)=0$ for every $x \in A_{x}, y \in A_{y}$. Then $P(x, y)$ is the zero polynomial, i.e., all $a_{i_{j}}=0$. This works over any field, and it generalizes to more than two variables.

Zero multiplicity. If a polynomial $p(z)$ has a root of multiplicity exactly m at $z=r$, then the $(m-1)$-st derivative of p at $z=r$ is 0 , the m-th derivative is nonzero, and $p^{\prime}(z)$ has a root of multiplicity exactly $m-1$ at $z=r$.

2 Problems

1. Find all real polynomials $p(z)$ with the following property: for every real polynomial $q(z)$, the two polynomials $p(q(z))$ and $q(p(z))$ are equal.
2. Find all polynomials $p(z)$ which satisfy both $p(0)=0$ and $p\left(z^{2}+1\right)=p(z)^{2}+1$.
3. Let $p(z)$ be a degree- n polynomial over \mathbb{C}, with $n \geq 1$. Prove that there are at least $n+1$ distinct complex numbers $z \in \mathbb{C}$ for which $p(z) \in\{0,1\}$.
4. (Binomial theorem for falling factorials.) For any positive integer n and any real number x, let the falling factorial $(x)_{n}$ be the product of n numbers $x(x-1)(x-2) \cdots(x-n+1)$. Prove that

$$
(x+y)_{n}=\sum_{k=0}^{n}\binom{n}{k}(x)_{k}(y)_{n-k} .
$$

This also holds for rising factorials $x^{(n)}=x(x+1) \cdots(x+n-1)$.
5. A weather station measures the temperature T continuously. Meteorologists discover that every day, the temperature T follows some polynomial curve $p(t)$ with degree ≤ 3. (The particular polynomial may change from day to day.) Show that we can find times $t_{1}<t_{2}$, which are independent of the polynomial p, such that the average temperature over the period 9 am to 3 pm is $\frac{1}{2}\left(p\left(t_{1}\right)+p\left(t_{2}\right)\right)$, with $t_{1} \approx 10: 16 \mathrm{am}$ and $t_{2} \approx 1: 44 \mathrm{pm}$.
6. Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=1,2,3, \ldots$ the polynomial

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

has exactly n distinct real roots?
7. Let $p(z)$ be a degree- n polynomial with real coefficients, all of whose roots are real. Prove that

$$
(n-1) p^{\prime}(z)^{2} \geq n p(z) p^{\prime \prime}(z)
$$

for all z, and determine all polynomials $p(z)$ for which

$$
(n-1) p^{\prime}(z)^{2}=n p(z) p^{\prime \prime}(z) .
$$

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

