Putnam D. 14

Po-Shen Loh

27 November 2011

1 Problems

Putnam 2007/A1. Find all values of α for which the curves $y=\alpha x^{2}+\alpha x+\frac{1}{24}$ and $x=\alpha y^{2}+\alpha y+\frac{1}{24}$ are tangent to each other.

Putnam 1996/B2. Show that for every positive integer n,

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}} .
$$

Putnam 1999/A3. Consider the power series expansion

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Prove that, for each integer $n \geq 0$, there is an integer m such that

$$
a_{n}^{2}+a_{n+1}^{2}=a_{m}
$$

Putnam 1999/A4. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

Putnam 1999/A5. Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999, then

$$
|p(0)| \leq C \int_{-1}^{1}|p(x)| d x
$$

Putnam 1999/A6. The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
$$

Show that, for all n, a_{n} is an integer multiple of n.

