Putnam D.12

Po-Shen Loh

13 November 2011

1 Problems

Putnam 1997/B1. Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$F_n = \sum_{m=1}^{6n-1} \min(\{\frac{m}{6n}\}, \{\frac{m}{3n}\}).$$

(Here $\min(a, b)$ denotes the minimum of a and b.)

Putnam 1997/B2. Let f be a twice-differentiable real-valued function satisfying

$$f(x) + f''(x) = -xg(x)f'(x),$$

where $g(x) \ge 0$ for all real x. Prove that |f(x)| is bounded.

- **Putnam 1997/B3.** For each positive integer n, write the sum $\sum_{m=1}^{n} 1/m$ in the form p_n/q_n , where p_n and q_n are relatively prime positive integers. Determine all n such that 5 does not divide q_n .
- **Putnam 1997/B4.** Let $a_{m,n}$ denote the coefficient of x^n in the expansion of $(1 + x + x^2)^m$. Prove that for all [integers] $k \ge 0$,

$$0 \le \sum_{i=0}^{\lfloor \frac{2k}{3} \rfloor} (-1)^i a_{k-i,i} \le 1$$

Putnam 1997/B5. Prove that for $n \ge 2$,

$$\underbrace{n \text{ terms}}_{2^{2^{\dots^2}}} \equiv \underbrace{n-1 \text{ terms}}_{2^{2^{\dots^2}}} \pmod{n}$$

Putnam 1997/B6. The dissection of the 3–4–5 triangle shown below (into four congruent right triangles similar to the original) has diameter 5/2. Find the least diameter of a dissection of this triangle into four parts. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.)