Putnam D. 12

Po-Shen Loh

13 November 2011

1 Problems

Putnam 1997/B1. Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$
F_{n}=\sum_{m=1}^{6 n-1} \min \left(\left\{\frac{m}{6 n}\right\},\left\{\frac{m}{3 n}\right\}\right)
$$

(Here $\min (a, b)$ denotes the minimum of a and b.)
Putnam 1997/B2. Let f be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x)
$$

where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded.
Putnam 1997/B3. For each positive integer n, write the sum $\sum_{m=1}^{n} 1 / m$ in the form p_{n} / q_{n}, where p_{n} and q_{n} are relatively prime positive integers. Determine all n such that 5 does not divide q_{n}.

Putnam 1997/B4. Let $a_{m, n}$ denote the coefficient of x^{n} in the expansion of $\left(1+x+x^{2}\right)^{m}$. Prove that for all [integers] $k \geq 0$,

$$
0 \leq \sum_{i=0}^{\left\lfloor\frac{2 k}{3}\right\rfloor}(-1)^{i} a_{k-i, i} \leq 1
$$

Putnam 1997/B5. Prove that for $n \geq 2$,

$$
\overbrace{2^{2 \cdots 2}}^{n \text { terms }} \equiv \overbrace{2^{2 \cdots 2}}^{n-1 \text { terms }}(\bmod n) .
$$

Putnam 1997/B6. The dissection of the 3-4-5 triangle shown below (into four congruent right triangles similar to the original) has diameter $5 / 2$. Find the least diameter of a dissection of this triangle into four parts. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.)

